Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 13 de 13
1.
Cancer Res Commun ; 3(8): 1564-1579, 2023 08.
Article En | MEDLINE | ID: mdl-37593752

In recent years, there has been considerable interest in mAb-based induction of costimulatory receptor signaling as an approach to combat cancer. However, promising nonclinical data have yet to translate to a meaningful clinical benefit. Inducible T-cell costimulator (ICOS) is a costimulatory receptor important for immune responses. Using a novel clinical-stage anti-ICOS immunoglobulin G4 mAb (feladilimab), which induces but does not deplete ICOS+ T cells and their rodent analogs, we provide an end-to-end evaluation of the antitumor potential of antibody-mediated ICOS costimulation alone and in combination with programmed cell death protein 1 (PD-1) blockade. We demonstrate, consistently, that ICOS is expressed in a range of cancers, and its induction can stimulate growth of antitumor reactive T cells. Furthermore, feladilimab, alone and with a PD-1 inhibitor, induced antitumor activity in mouse and humanized tumor models. In addition to nonclinical evaluation, we present three patient case studies from a first-time-in-human, phase I, open-label, dose-escalation and dose-expansion clinical trial (INDUCE-1; ClinicalTrials.gov: NCT02723955), evaluating feladilimab alone and in combination with pembrolizumab in patients with advanced solid tumors. Preliminary data showing clinical benefit in patients with cancer treated with feladilimab alone or in combination with pembrolizumab was reported previously; with example cases described here. Additional work is needed to further validate the translation to the clinic, which includes identifying select patient populations that will benefit from this therapeutic approach, and randomized data with survival endpoints to illustrate its potential, similar to that shown with CTLA-4 and PD-1 blocking antibodies. Significance: Stimulation of the T-cell activation marker ICOS with the anti-ICOS agonist mAb feladilimab, alone and in combination with PD-1 inhibition, induces antitumor activity across nonclinical models as well as select patients with advanced solid tumors.


Ambulatory Care Facilities , Antibodies, Monoclonal , Humans , Animals , Mice , Antibodies, Monoclonal/pharmacology , Immune Checkpoint Inhibitors , Immunoglobulin G , Inhibition, Psychological
2.
Cell Discov ; 8(1): 128, 2022 Nov 29.
Article En | MEDLINE | ID: mdl-36443312

Brain calcification is a critical aging-associated pathology and can cause multifaceted neurological symptoms. Cerebral phosphate homeostasis dysregulation, blood-brain barrier defects, and immune dysregulation have been implicated as major pathological processes in familial brain calcification (FBC). Here, we analyzed two brain calcification families and identified calcification co-segregated biallelic variants in the CMPK2 gene that disrupt mitochondrial functions. Transcriptome analysis of peripheral blood mononuclear cells (PBMCs) isolated from these patients showed impaired mitochondria-associated metabolism pathways. In situ hybridization and single-cell RNA sequencing revealed robust Cmpk2 expression in neurons and vascular endothelial cells (vECs), two cell types with high energy expenditure in the brain. The neurons in Cmpk2-knockout (KO) mice have fewer mitochondrial DNA copies, down-regulated mitochondrial proteins, reduced ATP production, and elevated intracellular inorganic phosphate (Pi) level, recapitulating the mitochondrial dysfunction observed in the PBMCs isolated from the FBC patients. Morphologically, the cristae architecture of the Cmpk2-KO murine neurons was also impaired. Notably, calcification developed in a progressive manner in the homozygous Cmpk2-KO mice thalamus region as well as in the Cmpk2-knock-in mice bearing the patient mutation, thus phenocopying the calcification pathology observed in the patients. Together, our study identifies biallelic variants of CMPK2 as novel genetic factors for FBC; and demonstrates how CMPK2 deficiency alters mitochondrial structures and functions, thereby highlighting the mitochondria dysregulation as a critical pathogenic mechanism underlying brain calcification.

3.
Nat Commun ; 12(1): 4445, 2021 07 21.
Article En | MEDLINE | ID: mdl-34290245

Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.


4-1BB Ligand/agonists , Antibodies, Bispecific/pharmacology , B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/drug effects , Immune Checkpoint Inhibitors/pharmacology , 4-1BB Ligand/immunology , Animals , Antibodies, Bispecific/immunology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes , Humans , Immune Checkpoint Inhibitors/immunology , Immune Tolerance/drug effects , Immunologic Memory/drug effects , Immunotherapy , Lymphocyte Activation/drug effects
4.
J Cell Physiol ; 234(10): 17473-17481, 2019 08.
Article En | MEDLINE | ID: mdl-30825199

Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3',5'-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1 , and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.


Angiotensin-Converting Enzyme Inhibitors/pharmacology , Glycation End Products, Advanced/metabolism , Kidney Tubules, Proximal/drug effects , Kidney Tubules, Proximal/metabolism , Nitric Oxide/metabolism , Captopril/pharmacology , Cell Enlargement/drug effects , Cell Line , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Cyclic GMP-Dependent Protein Kinases/metabolism , Enalapril/pharmacology , Enzyme Activation/drug effects , Glycation End Products, Advanced/toxicity , Humans , Hypertrophy/prevention & control , Kidney Tubules, Proximal/pathology , MAP Kinase Signaling System/drug effects , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase Type II/metabolism , S-Nitroso-N-Acetylpenicillamine/pharmacology , Signal Transduction/drug effects , Thionucleotides/pharmacology
5.
Hum Mutat ; 40(4): 392-403, 2019 04.
Article En | MEDLINE | ID: mdl-30609140

Primary familial brain calcification (PFBC) is a rare neurodegenerative disorder with four causative genes (SLC20A2, PDGFRB, PDGFB, and XPR1) that have been identified. Here, we aim to describe the mutational spectrum of four causative genes in a series of 226 unrelated Chinese PFBC patients. Mutations in four causative genes were detected in 16.8% (38/226) of PFBC patients. SLC20A2 mutations accounted for 14.2% (32/226) of all patients. Mutations in the other three genes were relatively rare, accounting for 0.9% (2/226) of all patients, respectively. Clinically, 44.8% of genetically confirmed patients (probands and relatives) were considered symptomatic. The most frequent symptoms were chronic headache, followed by movement disorders and vertigo. Moreover, the total calcification score was significantly higher in the symptomatic group compared to the asymptomatic group. Functionally, we observed impaired phosphate transport induced by seven novel missense mutations in SLC20A2 and two novel mutations in XPR1. The mutation p.D164Y in XPR1 might result in low protein expression through an enhanced proteasome pathway. In conclusion, our study further confirms that mutations in SLC20A2 are the major cause of PFBC and provides additional evidence for the crucial roles of phosphate transport impairment in the pathogenies of PFBC.


Brain Diseases/genetics , Calcinosis/genetics , Genetic Predisposition to Disease , Mutation , Neurodegenerative Diseases/genetics , Adult , Aged , Alleles , Biological Transport , Biomarkers , Brain Diseases/diagnosis , Brain Diseases/metabolism , Calcinosis/diagnosis , Calcinosis/metabolism , Cell Line, Tumor , China , Female , Genes, sis , Genotype , Humans , Male , Middle Aged , Neurodegenerative Diseases/diagnosis , Neurodegenerative Diseases/metabolism , Neuroimaging , Phenotype , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , Sodium-Phosphate Cotransporter Proteins, Type III/genetics , Tomography, X-Ray Computed , Xenotropic and Polytropic Retrovirus Receptor
6.
Cell Tissue Res ; 370(2): 267-273, 2017 11.
Article En | MEDLINE | ID: mdl-28766044

Primary familial brain calcification (PFBC) is a neuropsychiatric disorder characterized by bilateral cerebral calcification with diverse neurologic or psychiatric symptoms. Recently, XPR1 variation has accounted for PFBC as another new causative gene. However, little is known about the distribution and basic function of XPR1 and its interaction with the other three pathogenic genes for PFBC (SLC20A2, PDGFRB and PDGFB). The aim of this study was to further clarify the role of XPR1 in PFBC brain pathology. As a result, gene expression profiles showed that XPR1 mRNA was widely expressed throughout the mouse brain. Cerebellum and striatum, most commonly affected in PFBC, contained a higher level of XPR1 protein than other brain regions. Additionally, XPR1 deficiency seriously affected Pi efflux and XPR1 mutations seemed to have an effect through haploinsufficiency mechanism. The immunoprecipitation and immunohistochemical studies demonstrated that XPR1 could interact with PDGFRB and might form a complex on the cell membrane. These results suggested that XPR1 played a fundamental role in the maintenance of cellular phosphate balance in the brain. This provided us with a novel perspective on understanding the pathophysiology of PFBC. The expression networks and interaction with the known pathogenic genes could shed new light on additional candidate genes for PFBC.


Brain Diseases/genetics , Brain/metabolism , Calcinosis/genetics , Receptors, G-Protein-Coupled/genetics , Receptors, Virus/genetics , Transcriptome , Animals , Brain/pathology , Brain Diseases/metabolism , Brain Diseases/pathology , Calcinosis/metabolism , Calcinosis/pathology , Gene Expression , Genetic Predisposition to Disease , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Protein Interaction Maps , RNA, Messenger/genetics , Receptor, Platelet-Derived Growth Factor beta/analysis , Receptor, Platelet-Derived Growth Factor beta/metabolism , Receptors, G-Protein-Coupled/analysis , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/analysis , Receptors, Virus/metabolism , Up-Regulation , Xenotropic and Polytropic Retrovirus Receptor
7.
Gene ; 2016 Oct 28.
Article En | MEDLINE | ID: mdl-27984190

BACKGROUND: Until recently, primary familial brain calcification (PFBC) has been determined by four genes, SLC20A2, PDGFRB, PDGFB and XPR1. No studies have been carried out to analyze the gene mutation of PDGFB in Chinese population. OBJECTIVE: To screen mutations of PDGFB gene in a large cohort of Chinese PFBC patients with no SLC20A2 mutations. METHODS: We recruited 192 PFBC patients, including 21 index cases and 171 sporadic cases, in our study. Peripheral venous blood samples of all included participants were collected for genomic DNA extraction. The coding sequence of PDGFB was amplified by polymerase chain reaction (PCR) followed by direct sequencing. The potential effects of the identified variants on protein function were assessed by bioinformatics analysis. RESULTS: Three missense variants (c.35G>T, c.232C>T, and c.610C>A) and one nonsense variant (c.220G>T) of PDGFB were identified in five sporadic PFBC patients. The variant c.35G>T was found in 2 healthy controls from the same ethnic background, whereas c.220G>T, c.232C>T and c.610C>A were absent from 500 controls. c.220G>T (p.E74*) produced a stop codon in the place of the glutamicacid residue number 74. c.232C>T (p.R78C) occurred at highly conserved regions and were predicted as damaging by at least two computational predictive programs, suggesting that this variant were likely to have a causal role in PFBC. Although variant c.610C>A (p.P204T) also occurred at a highly conserved region, it was predicted to be most likely benign by two computational predictive programs, suggesting an uncertain role of this variant on PFBC. CONCLUSIONS: The present study identified one likely pathogenic variant (p.E74*) and two variants of uncertain significance (p.R78C and p.P204T) in PDGFB. Further studies of PDGF-B functional expression for these variants are still required to confirm the pathogenic effect.

8.
J Pharmacol Exp Ther ; 340(3): 676-87, 2012 Mar.
Article En | MEDLINE | ID: mdl-22171089

Src-null mice have higher bone mass because of decreased bone resorption and increased bone formation, whereas Abl-null mice are osteopenic, because of decreased bone formation. Compound I, a potent inhibitor of Src in an isolated enzyme assay (IC(50) 0.55 nM) and a Src-dependent cell growth assay, with lower activity on equivalent Abl-based assays, potently, but biphasically, accelerated differentiation of human mesenchymal stem cells to an osteoblast phenotype (1-10 nM). Compound I (≥0.1 nM) also activated osteoblasts and induced bone formation in isolated neonatal mouse calvariae. Compound I required higher concentrations (100 nM) to inhibit differentiation and activity of osteoclasts. Transcriptional profiling (TxP) of calvaria treated with 1 µM compound I revealed down-regulation of osteoclastic genes and up-regulation of matrix genes and genes associated with the osteoblast phenotype, confirming compound I's dual effects on bone resorption and formation. In addition, calvarial TxP implicated calcitonin-related polypeptide, ß (ß-CGRP) as a potential mediator of compound I's osteogenic effect. In vivo, compound I (1 mg/kg s.c.) increased vertebral trabecular bone volume 21% (microcomputed tomography) in intact female mice. Increased trabecular volume was also detected histologically in a separate bone, the femur, particularly in the secondary spongiosa (100% increase), which underwent a 171% increase in bone formation rate, a 73% increase in mineralizing surface, and a 59% increase in mineral apposition rate. Similar effects were observed in ovariectomized mice with established osteopenia. We conclude that the Src inhibitor compound I is osteogenic, presumably because of its potent stimulation of osteoblast differentiation and activation, possibly mediated by ß-CGRP.


Osteogenesis/drug effects , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-abl/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Amino Acid Sequence , Animals , Cell Differentiation , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Molecular Sequence Data , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoclasts/cytology , Osteoclasts/drug effects
9.
Arch Virol ; 156(10): 1905-8, 2011 Oct.
Article En | MEDLINE | ID: mdl-21805095

Tomato spotted wilt virus (TSWV) is well established in most countries worldwide, while it is rarely reported in China. In this report, we have determined the complete nucleotide sequence of a TSWV isolate named TSWV-YN infecting tomato in Yunnan province in southwestern China. The tripartite genome of TSWV-YN was found to consist of L, M and S RNAs of 8910, 4773 and 2970 nt, respectively. The complete genome sequence and the sequence of each genomic region of TSWV-YN from China were compared to those of four other TSWV isolates from Brazil and Korea. The phylogenetic relationship of the Chinese TSWV-YN isolate to other TSWV isolates of different geographic origin, based on the nucleotide sequences of the glycoprotein (GP) and nucleocapsid (N) genes, was also analyzed in this study.


Genome, Viral , Plant Diseases/virology , Solanum lycopersicum/virology , Tospovirus/genetics , Tospovirus/isolation & purification , Base Sequence , Brazil , China , Korea , Molecular Sequence Data , Phylogeny , Tospovirus/classification , Viral Proteins/genetics
10.
J Cell Biochem ; 109(4): 794-800, 2010 Mar 01.
Article En | MEDLINE | ID: mdl-20069565

The bioactive phospholipid, lysophosphatidic acid (LPA), acting through at least five distinct receptors LPA1-LPA5, plays important roles in numerous biological processes. Here we report that LPA induces osteoblastic differentiation of human mesenchymal stem cells hMSC-TERT. We find that hMSC-TERT mostly express two LPA receptors, LPA1 and LPA4, and undergo osteoblastic differentiation in serum-containing medium. Inhibition of LPA1 with Ki16425 completely abrogates osteogenesis, indicating that this process is mediated by LPA in the serum through activation of LPA1. In contrast to LPA1, down-regulation of LPA4 expression with shRNA significantly increases osteogenesis, suggesting that this receptor normally exerts negative effects on differentiation. Mechanistically, we find that in hMSC-TERT, LPA induces a rise in both cAMP and Ca(2+). The rise in Ca(2+) is completely abolished by Ki16425, whereas LPA-mediated cAMP increase is not sensitive to Ki16425. To test if LPA signaling pathways controlling osteogenesis in vitro translate into animal physiology, we evaluated the bones of LPA4-deficient mice. Consistent with the ability of LPA4 to inhibit osteoblastic differentiation of stem cells, LPA4-deficient mice have increased trabecular bone volume, number, and thickness.


Cell Differentiation/drug effects , Lysophospholipids/pharmacology , Osteoblasts/cytology , Receptors, Lysophosphatidic Acid/metabolism , Receptors, Purinergic/metabolism , Animals , Bone and Bones , Calcium/analysis , Cells, Cultured , Cyclic AMP/analysis , Humans , Mesenchymal Stem Cells/cytology , Mice , Mice, Knockout , Osteoblasts/drug effects , Osteogenesis , Receptors, Purinergic P2
11.
Bioorg Med Chem Lett ; 20(1): 366-70, 2010 Jan 01.
Article En | MEDLINE | ID: mdl-19897365

A series of (hetero)arylpyrimidines agonists of the Wnt-beta-catenin cellular messaging system have been prepared. These compounds show activity in U2OS cells transfected with Wnt-3a, TCF-luciferase, Dkk-1 and tk-Renilla. Selected compounds show minimal GSK-3beta inhibition indicating that the Wnt-beta-catenin agonism activity most likely comes from interaction at Wnt-3a/Dkk-1. Two examples 1 and 25 show in vivo osteogenic activity in a mouse calvaria model. One example 1 is shown to activate non-phosphorylated beta-catenin formation in bone.


Imidazoles/chemistry , Pyrimidines/chemistry , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Bone Development/drug effects , Cell Line, Tumor , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Imidazoles/chemical synthesis , Imidazoles/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Mice , Mice, Inbred C57BL , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Recombinant Fusion Proteins/agonists , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction , Skull/metabolism , Wnt Proteins/agonists , Wnt Proteins/genetics , Wnt3 Protein , Wnt3A Protein , beta Catenin/agonists
12.
Infect Immun ; 74(5): 2637-50, 2006 May.
Article En | MEDLINE | ID: mdl-16622200

Alpha-2,3-sialyltransferase (Lst) is expressed on the outer membrane of Neisseria gonorrhoeae and Neisseria meningitidis and sialylates surface lipooligosaccharide (LOS), facilitating resistance to complement-mediated killing. The enzyme is constitutively expressed from a single gene (lst) and does not undergo antigenic or phase variation. We observed that Triton X-100 extracts of N. gonorrhoeae strain F62 contain about fivefold more sialyltransferase (Stase) activity than extracts of N. meningitidis strain MC58 [symbol: see text]3 a serogroup B acapsulate mutant. We confirmed and expanded upon this observation by showing that extracts of 16 random N. gonorrhoeae isolates contain various amounts of Stase activity, but, on average, 2.2-fold-more Stase activity than extracts of 16 N. meningitidis clinical isolates, representing several serogroups and nongroupable strains. Northern and real-time reverse transcription-PCR analysis of lst transcript levels in N. gonorrhoeae and N. meningitidis revealed that N. gonorrhoeae strains express more lst transcript than N. meningitidis strains. Although transcript levels correlate with average Stase activity observed in the two species, there was not a direct correlation between lst transcript levels and Stase activity among individual isolates of each species. Comparison of lst upstream (5'lst) regions of N. gonorrhoeae and N. meningitidis revealed striking sequence differences characteristic of the two pathogens. N. gonorrhoeae 5'lst regions possess 30-bp and 13-bp elements present as single elements or as tandem repeats that exist only as single elements in the 5'lst regions of N. meningitidis isolates. In addition, the 5'lst regions of N. meningitidis strains have 105-bp transposon-like Correia elements which are absent in N. gonorrhoeae. Chromosomal N. gonorrhoeae 5'lst::lacZ translational fusions expressed 4.75 +/- 0.09-fold (n = 4) higher beta-galactosidase (beta-gal) activity than N. meningitidis 5'lst::lacZ fusions in a host-independent manner, indicating differential expression is governed at least in part by sequence variations in the 5'lst regions. Reporter fusion assays and promoter-mapping analysis revealed that N. gonorrhoeae and N. meningitidis use different promoters with different strengths to transcribe lst. In N. gonorrhoeae, a strong sigma 70 promoter 80 bp upstream of the translational start site is used to transcribe lst, whereas this promoter is inactive in N. meningitidis. In N. meningitidis, a weak sigma 70 promoter at the 3' terminus of a 105-bp Correia repeat-enclosed element 99 bp upstream of the translational start site is used to transcribe lst. We conclude that differential Stase expression between N. gonorrhoeae and N. meningitidis is due at least in part to differential lst gene transcription.


Neisseria gonorrhoeae/enzymology , Neisseria meningitidis/enzymology , Sialyltransferases/genetics , Transcription, Genetic , Base Sequence , Blotting, Northern , Molecular Sequence Data , Neisseria gonorrhoeae/genetics , Neisseria meningitidis/genetics , Polymerase Chain Reaction , Promoter Regions, Genetic , Repetitive Sequences, Nucleic Acid , beta-Galactoside alpha-2,3-Sialyltransferase
13.
J Cell Biochem ; 98(5): 1203-20, 2006 Aug 01.
Article En | MEDLINE | ID: mdl-16514668

The biological activities of parathyroid hormone (PTH) on bone are quite complex as demonstrated by its catabolic and anabolic activities on the skeleton. Although there have been many reports describing genes that are regulated by PTH in osteoblast cells, the goal of this study was to utilize a well-established in vivo PTH anabolic treatment regimen to identify genes that mediate bone anabolic effects of PTH. We identified a gene we named PTH anabolic induced gene in bone (PAIGB) that has been reported as brain and acute leukemia cytoplasmic (BAALC). Therefore, using the latter nomenclature, we have discovered that BAALC is a PTH-regulated gene whose mRNA expression was selectively induced in rat tibiae nearly 100-fold (maximal) by a PTH 1-34 anabolic treatment regimen in a time-dependent manner. Although BAALC is broadly expressed, PTH did not regulate BAALC expression in other PTH receptor expressing tissues and we find that the regulation of BAALC protein by PTH in vivo is confined to mature osteoblasts. Further in vitro studies using rat UMR-106 osteoblastic cells show that PTH 1-34 rapidly induces BAALC mRNA expression maximally by 4 h while the protein was induced by 8 h. In addition to being regulated by PTH 1-34, BAALC expression can also be induced by other bone forming factors including PGE(2) and 1,25 dihydroxy vitamin D(3). We determined that BAALC is regulated by PTH predominantly through the cAMP/PKA pathway. Finally, we demonstrate in MC3T3-E1 osteoblastic cells that BAALC overexpression regulates markers of osteoblast differentiation, including downregulating alkaline phosphatase and osteocalcin expression while inducing osteopontin expression. We also demonstrate that these transcriptional responses mediated by BAALC are similar to the responses elicited by PTH 1-34. These data, showing BAALC overexpression can mimic the effect of PTH on markers of osteoblast differentiation, along with the observations that BAALC is induced selectively with a bone anabolic treatment regimen of PTH (not a catabolic treatment regimen), suggest that BAALC may be an important mediator of the PTH anabolic action on bone cell function.


Gene Expression Regulation/drug effects , Osteogenesis/drug effects , Osteogenesis/genetics , Parathyroid Hormone/pharmacology , Amino Acid Sequence , Animals , Biomarkers , Calcitriol/pharmacology , Cell Differentiation , Cells, Cultured , Conserved Sequence , Cyclic AMP/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Dinoprostone/pharmacology , Female , Humans , Molecular Sequence Data , Neoplasm Proteins/chemistry , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Osteoblasts/cytology , Osteoblasts/drug effects , Osteoblasts/metabolism , Rats , Rats, Sprague-Dawley , Sequence Alignment , Signal Transduction
...