Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 151
1.
World J Hepatol ; 16(2): 146-151, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38495283

We read with interest the article by Xing Wang, which was published in the recent issue of the World Journal of Hepatology 2023; 15: 1294-1306. This article focuses particularly on the prevalence and trends in the etiology of liver cirrhosis (LC), prognosis for patients suffering from cirrhosis-related complications and hepatocellular carcinoma (HCC), and management strategies. The etiology of cirrhosis varies according to geographical, economic, and population factors. Viral hepatitis is the dominant cause in China. Vaccination and effective treatment have reduced the number of people with viral hepatitis, but the overall number is still large. Patients with viral hepatitis who progress over time to LC and HCC remain an important population to manage. The increased incidence of metabolic syndrome and alcohol consumption is likely to lead to a potential exponential increase in metabolic dysfunction-associated steatotic liver disease (MASLD)-associated LC and alcoholic liver disease in the future. Investigating the evolution of the etiology of LC is important for guiding the direction of future research and policy development. These changing trends indicate a need for greater emphasis on tackling obesity and diabetes, and implementing more effective measures to regulate alcohol consumption in order to reduce the occurrence of MASLD. In an effort to help cope with these changing trends, the authors further proposed countermeasures for healthcare authorities doctors, and patients.

2.
Cell Death Dis ; 15(3): 205, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38467631

Temozolomide (TMZ), a DNA alkylating agent, has become the primary treatment for glioma, the most common malignancy of the central nervous system. Although TMZ-containing regimens produce significant clinical response rates, some patients inevitably suffer from inferior treatment outcomes or disease relapse, likely because of poor chemosensitivity of glioma cells due to a robust DNA damage response (DDR). GINS2, a subunit of DNA helicase, contributes to maintaining genomic stability and is highly expressed in various cancers, promoting their development. Here, we report that GINS2 was upregulated in TMZ-treated glioma cells and co-localized with γH2AX, indicating its participation in TMZ-induced DDR. Furthermore, GINS2 regulated the malignant phenotype and TMZ sensitivity of glioma cells, mostly by promoting DNA damage repair by affecting the mRNA stability of early growth response factor 1 (EGR1), which in turn regulates the transcription of epithelial cell-transforming sequence 2 (ECT2). We constructed a GINS2-EGR1-ECT2 prognostic model, which accurately predicted patient survival. Further, we screened Palbociclib/BIX-02189 which dampens GINS2 expression and synergistically inhibits glioma cell proliferation with TMZ. These findings delineate a novel mechanism by which GINS2 regulates the TMZ sensitivity of glioma cells and propose a promising combination therapy to treat glioma.


Brain Neoplasms , Glioma , Humans , Temozolomide/therapeutic use , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Neoplasm Recurrence, Local/drug therapy , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Epithelial Cells/metabolism , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/pharmacology , Antineoplastic Agents, Alkylating/therapeutic use , Early Growth Response Protein 1/genetics , Proto-Oncogene Proteins/pharmacology , Chromosomal Proteins, Non-Histone
3.
J Clin Invest ; 134(10)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38546787

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Cyclin-Dependent Kinase 8 , Cyclin-Dependent Kinases , Prostatic Neoplasms, Castration-Resistant , Protein Kinase Inhibitors , Xenograft Model Antitumor Assays , Male , Humans , Animals , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/enzymology , Mice , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , Cyclin-Dependent Kinase 8/antagonists & inhibitors , Cyclin-Dependent Kinase 8/genetics , Cyclin-Dependent Kinase 8/metabolism , Cell Line, Tumor , Protein Kinase Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment/drug effects
6.
Heliyon ; 10(4): e26219, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38404827

Background: Epilepsy is recognized as the most common chronic neurological condition among children, and hippocampal neuronal cell death has been identified as a crucial factor in the pathophysiological processes underlying seizures. In recent studies, PANoptosis, a newly characterized form of cell death, has emerged as a significant contributor to the development of various neurological disorders, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. PANoptosis involves the simultaneous activation of pyroptosis, apoptosis, and necroptosis within the same population of cells. However, its specific role in the context of seizures remains to be fully elucidated. Further investigation is required to uncover the precise involvement of PANoptosis in the pathogenesis of seizures and to better understand its potential implications for the development of targeted therapeutic approaches in epilepsy. Methods: In this study, the gene expression data of the hippocampus following the administration of kainic acid (KA) or NaCl was obtained from the Gene Expression Omnibus (GEO) database. The PANoptosis-related gene set was compiled from the GeneCards database and previous literature. Time series analysis was performed to analyze the temporal expression patterns of the PANoptosis-related genes. Gene set variation analysis (GSVA), Gene ontology (GO), and Kyoto encyclopedia of genes and genomes (KEGG) were employed to explore potential biological mechanisms underlying PANoptosis and its role in seizures. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were utilized to identify pivotal gene modules and PANoptosis-related genes associated with the pathophysiological processes underlying seizures. To validate the expression of PANoptosis-related genes, Western blotting or quantitative real-time polymerase chain reaction (qRT-PCR) assays were conducted. These experimental validations were performed in human blood samples, animal models, and cell models to verify the expression patterns of the PANoptosis-related genes and their relevance to epilepsy. Results: The GSVA analysis performed in this study demonstrated that PANoptosis-related genes have the potential to distinguish between the control group and KA-induced epileptic mice. This suggests that the expression patterns of these genes are significantly altered in response to KA-induced epilepsy. Furthermore, the Weighted gene co-expression network analysis (WGCNA) identified the blue module as being highly associated with epileptic phenotypes. This module consists of genes that exhibit correlated expression patterns specifically related to epilepsy. Within the blue module, 10 genes were further identified as biomarker genes for epilepsy. These genes include MLKL, IRF1, RIPK1, GSDMD, CASP1, CASP8, ZBP1, CASP6, PYCARD, and IL18. These genes likely play critical roles in the pathophysiology of epilepsy and could serve as potential biomarkers for diagnosing or monitoring the condition. Conclusion: In conclusion, our study suggests that the hippocampal neuronal cell death in epilepsy may be closely related to PANoptosis, a novel form of cell death, which provides insights into the underlying pathophysiological processes of epilepsy and helps the development of novel therapeutic approaches for epilepsy.

7.
Sci Total Environ ; 917: 170317, 2024 Mar 20.
Article En | MEDLINE | ID: mdl-38301787

Lead (Pb), a pervasive and ancient toxic heavy metal, continues to pose significant neurological health risks, particularly in regions such as Southeast Asia. While previous research has primarily focused on the adverse effects of acute, high-level lead exposure on neurological systems, studies on the impacts of chronic, low-level exposure are less extensive, especially regarding the precise mechanisms linking ferroptosis - a novel type of neuron cell death - with cognitive impairment. This study aims to explore the potential effects of chronic low-level lead exposure on cognitive function and hippocampal neuronal ferroptosis. This research represents the first comprehensive investigation into the impact of chronic low-level lead exposure on hippocampal neuronal ferroptosis, spanning clinical settings, bioinformatic analyses, and experimental validation. Our findings reveal significant alterations in the expression of genes associated with iron metabolism and Nrf2-dependent ferroptosis following lead exposure, as evidenced by comparing gene expression in the peripheral blood of lead-acid battery workers and workers without lead exposure. Furthermore, our in vitro and in vivo experimental results strongly suggest that lead exposure may precipitate cognitive dysfunction and induce hippocampal neuronal ferroptosis. In conclusion, our study indicates that chronic low-level lead exposure may activate microglia, leading to the promotion of ferroptosis in hippocampal neurons.


Ferroptosis , Lead , Humans , Lead/toxicity , Cognition , Machine Learning , Computational Biology , Hippocampus , Neurons
8.
PLoS One ; 19(1): e0288221, 2024.
Article En | MEDLINE | ID: mdl-38271465

Many practitioners, such as pilots, frequently face working memory (WM) demands under acute stress environments, while the effect of acute stress on WM has not been conclusively studied because it is moderated by a variety of factors. The current study investigated how acute stress affects pilots' WM under different memory load conditions. There are 42 pilots conducting the experiments, consisting of 21 stress group participants experiencing the Trier Social Stress Test (TSST) and 21 control group participants experiencing the controlled TSST (C-TSST). Subsequently, both groups performed N-back tasks under three memory load conditions (0-back, 1-back, and 2-back). State Anxiety Inventory (S-AI), heart rate (HR), and salivary cortisol concentrations (SCC) were collected to analyze acute stress induction. The results revealed that (1) the TSST could effectively induce acute stress with higher S-AI, HR, and SCC; (2) higher memory load reduces WM accuracy (ACC) and delays response times (RT); (3) acute stress increases WM ACC under moderate load conditions (1-back task). These results suggest that acute stress may not necessarily impair WM and even improve WM performance under certain memory load conditions. Potential mechanisms of acute stress effects on WM and alternative explanations for the modulatory role of memory load consistent with the emotion and motivation regulation theory are discussed. These findings not only provide insight into the field of acute stress and WM but are also beneficial for pilot training and the development of stress management strategies.


Memory Disorders , Memory, Short-Term , Humans , Memory, Short-Term/physiology , Cognition , Reaction Time/physiology , Anxiety Disorders , Hydrocortisone
11.
MedComm (2020) ; 4(6): e449, 2023 Dec.
Article En | MEDLINE | ID: mdl-38098610

Lung adenocarcinoma (LUAD) is the most common form of lung cancer, with a consistently low 5-year survival rate. Therefore, we aim to identify key genes involved in LUAD progression to pave the way for targeted therapies in the future. BDH1 plays a critical role in the conversion between acetoacetate and ß-hydroxybutyrate. The presence of ß-hydroxybutyrate is essential for initiating lysine ß-hydroxybutyrylation (Kbhb) modifications. Histone Kbhb at the H3K9 site is attributed to transcriptional activation. We unveiled that ß-hydroxybutyrate dehydrogenase 1 (BDH1) is not only conspicuously overexpressed in LUAD, but it also modulates the overall intracellular Kbhb modification levels. The RNA sequencing analysis revealed leucine-rich repeat-containing protein 31 (LRRC31) as a downstream target gene regulated by BDH1. Ecologically expressed BDH1 hinders the accumulation of H3K9bhb in the transcription start site of LRRC31, consequently repressing the transcriptional expression of LRRC31. Furthermore, we identified potential BDH1 inhibitors, namely pimozide and crizotinib, which exhibit a synergistic inhibitory effect on the proliferation of LUAD cells exhibiting high expression of BDH1. In summary, this study elucidates the molecular mechanism by which BDH1 mediates LUAD progression through the H3K9bhb/LRRC31 axis and proposes a therapeutic strategy targeting BDH1-high-expressing LUAD, providing a fresh perspective for LUAD treatment.

12.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Article En | MEDLINE | ID: mdl-37570590

The application of graphene-based catalysts in the electrocatalytic CO2 reduction reaction (ECO2RR) for mitigating the greenhouse effect and energy shortage is a growing trend. The unique and extraordinary properties of graphene-based catalysts, such as low cost, high electrical conductivity, structural tunability, and environmental friendliness, have rendered them promising materials in this area. By doping heteroatoms or artificially inducing defects in graphene, its catalytic performance can be effectively improved. In this work, the mechanisms underlying the CO2 reduction reaction on 10 graphene-based catalysts were systematically studied. N/B/O-codoped graphene with a single-atom vacancy defect showed the best performance and substantial improvement in catalytic activity compared with pristine graphene. The specific roles of the doped elements, including B, N, and O, as well as the defects, are discussed in detail. By analysing the geometric and electronic structures of the catalysts, we showed how the doped heteroatoms and defects influence the catalytic reaction process and synergistically promoted the catalytic efficiency of graphene.

13.
Cardiovasc Res ; 119(10): 1981-1996, 2023 08 19.
Article En | MEDLINE | ID: mdl-37392461

AIMS: Systemic inflammation occurs commonly during many human disease settings and increases vascular permeability, leading to organ failure, and lethal outcomes. Lipocalin 10 (Lcn10), a poorly characterized member of the lipocalin family, is remarkably altered in the cardiovascular system of human patients with inflammatory conditions. Nonetheless, whether Lcn10 regulates inflammation-induced endothelial permeability remains unknown. METHODS AND RESULTS: Systemic inflammation models were induced using mice by injection of endotoxin lipopolysaccharide (LPS) or caecal ligation and puncture (CLP) surgery. We observed that the expression of Lcn10 was dynamically altered only in endothelial cells (ECs), but not in either fibroblasts or cardiomyocytes isolated from mouse hearts following the LPS challenge or CLP surgery. Using in vitro gain- and loss-of-function approaches and an in vivo global knockout mouse model, we discovered that Lcn10 negatively regulated endothelial permeability upon inflammatory stimuli. Loss of Lcn10 augmented vascular leakage, leading to severe organ damage and higher mortality following LPS challenge, compared to wild-type controls. By contrast, overexpression of Lcn10 in ECs displayed opposite effects. A mechanistic analysis revealed that both endogenous and exogenous elevation of Lcn10 in ECs could activate slingshot homologue 1 (Ssh1)-Cofilin signalling cascade, a key axis known to control actin filament dynamics. Accordingly, a reduced formation of stress fibre and increased generation of cortical actin band were exhibited in Lcn10-ECs, when compared to controls upon endotoxin insults. Furthermore, we identified that Lcn10 interacted with LDL receptor-related protein 2 (LRP2) in ECs, which acted as an upstream factor of the Ssh1-Confilin signalling. Finally, injection of recombinant Lcn10 protein into endotoxic mice showed therapeutic effects against inflammation-induced vascular leakage. CONCLUSION: This study identifies Lcn10 as a novel regulator of EC function and illustrates a new link in the Lcn10-LRP2-Ssh1 axis to controlling endothelial barrier integrity. Our findings may provide novel strategies for the treatment of inflammation-related diseases.


Endothelial Cells , Lipopolysaccharides , Humans , Animals , Mice , Endothelial Cells/metabolism , Lipopolysaccharides/pharmacology , Lipopolysaccharides/metabolism , Signal Transduction , Inflammation/prevention & control , Inflammation/metabolism , Mice, Knockout , Receptors, LDL/metabolism
14.
Biomedicines ; 11(7)2023 Jul 20.
Article En | MEDLINE | ID: mdl-37509689

Chaperone-mediated autophagy (CMA) is a process that rapidly degrades proteins labeled with KFERQ-like motifs within cells via lysosomes to terminate their cellular functioning. Meanwhile, CMA plays an essential role in various biological processes correlated with cell proliferation and apoptosis. Previous studies have shown that CMA was initially found to be procancer in cancer cells, while some theories suggest that it may have an inhibitory effect on the progression of cancer in untransformed cells. Therefore, the complex relationship between CMA and cancer has aroused great interest in the application of CMA activity regulation in cancer therapy. Here, we describe the basic information related to CMA and introduce the physiological functions of CMA, the dual role of CMA in different cancer contexts, and its related research progress. Further study on the mechanism of CMA in tumor development may provide novel insights for tumor therapy targeting CMA. This review aims to summarize and discuss the complex mechanisms of CMA in cancer and related potential strategies for cancer therapy.

15.
J Exp Clin Cancer Res ; 42(1): 165, 2023 Jul 12.
Article En | MEDLINE | ID: mdl-37438818

BACKGROUND: The majority of women with epithelial ovarian cancer (OvCa) are diagnosed with metastatic disease, resulting in a poor 5-year survival of 31%. Obesity is a recognized non-infectious pandemic that increases OvCa incidence, enhances metastatic success and reduces survival. We have previously demonstrated a link between obesity and OvCa metastatic success in a diet-induced obesity mouse model wherein a significantly enhanced tumor burden was associated with a decreased M1/M2 tumor-associated macrophage ratio (Liu Y et al. Can, Res. 2015; 75:5046-57). METHODS: The objective of this study was to use pre-clinical murine models of diet-induced obesity to evaluate the effect of a high fat diet (HFD) on response to standard of care chemotherapy and to assess obesity-associated changes in the tumor microenvironment. Archived tumor tissues from ovarian cancer patients of defined body mass index (BMI) were also evaluated using multiplexed immunofluorescence analysis of immune markers. RESULTS: We observed a significantly diminished response to standard of care paclitaxel/carboplatin chemotherapy in HFD mice relative to low fat diet (LFD) controls. A corresponding decrease in the M1/M2 macrophage ratio and enhanced tumor fibrosis were observed both in murine DIO studies and in human tumors from women with BMI > 30. CONCLUSIONS: Our data suggest that the reported negative impact of obesity on OvCa patient survival may be due in part to the effect of the altered M1/M2 tumor-associated macrophage ratio and enhanced fibrosis on chemosensitivity. These data demonstrate a contribution of host obesity to ovarian tumor progression and therapeutic response and support future combination strategies targeting macrophage polarization and/or fibrosis in the obese host.


Ovarian Neoplasms , Standard of Care , Humans , Female , Animals , Mice , Tumor Microenvironment , Ovarian Neoplasms/drug therapy , Obesity/complications , Carcinoma, Ovarian Epithelial
16.
Brain Behav Immun ; 112: 96-117, 2023 08.
Article En | MEDLINE | ID: mdl-37286175

Inflammatory bowel disease (IBD) is a chronic condition with a high recurrence rate. To date, the clinical treatment of IBD mainly focuses on inflammation and gastrointestinal symptoms while ignoring the accompanying visceral pain, anxiety, depression, and other emotional symptoms. Evidence is accumulating that bi-directional communication between the gut and the brain is indispensable in the pathophysiology of IBD and its comorbidities. Increasing efforts have been focused on elucidating the central immune mechanisms in visceral hypersensitivity and depression following colitis. The triggering receptors expressed on myeloid cells-1/2 (TREM-1/2) are newly identified receptors that can be expressed on microglia. In particular, TREM-1 acts as an immune and inflammatory response amplifier, while TREM-2 may function as a molecule with a putative antagonist role to TREM-1. In the present study, using the dextran sulfate sodium (DSS)-induced colitis model, we found that peripheral inflammation induced microglial and glutamatergic neuronal activation in the anterior cingulate cortex (ACC). Microglial ablation mitigated visceral hypersensitivity in the inflammation phase rather than in the remission phase, subsequently preventing the emergence of depressive-like behaviors in the remission phase. Moreover, a further mechanistic study revealed that overexpression of TREM-1 and TREM-2 remarkably aggravated DSS-induced neuropathology. The improved outcome was achieved by modifying the balance of TREM-1 and TREM-2 via genetic and pharmacological means. Specifically, a deficiency of TREM-1 attenuated visceral hyperpathia in the inflammatory phase, and a TREM-2 deficiency improved depression-like symptoms in the remission phase. Taken together, our findings provide insights into mechanism-based therapy for inflammatory disorders and establish that microglial innate immune receptors TREM-1 and TREM-2 may represent a therapeutic target for the treatment of pain and psychological comorbidities associated with chronic inflammatory diseases by modulating neuroinflammatory responses.


Colitis , Immunity, Innate , Receptors, Immunologic , Triggering Receptor Expressed on Myeloid Cells-1 , Humans , Colitis/immunology , Colitis/pathology , Colitis/psychology , Gyrus Cinguli , Inflammation , Microglia/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Animals , Mice , Receptors, Immunologic/metabolism
17.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article En | MEDLINE | ID: mdl-37372952

Ovarian cancer is the sixth leading cause of cancer-related death in women, and both occurrence and mortality are increased in women over the age of 60. There are documented age-related changes in the ovarian cancer microenvironment that have been shown to create a permissive metastatic niche, including the formation of advanced glycation end products, or AGEs, that form crosslinks between collagen molecules. Small molecules that disrupt AGEs, known as AGE breakers, have been examined in other diseases, but their efficacy in ovarian cancer has not been evaluated. The goal of this pilot study is to target age-related changes in the tumor microenvironment with the long-term aim of improving response to therapy in older patients. Here, we show that AGE breakers have the potential to change the omental collagen structure and modulate the peritoneal immune landscape, suggesting a potential use for AGE breakers in the treatment of ovarian cancer.


Glycation End Products, Advanced , Ovarian Neoplasms , Humans , Female , Aged , Pilot Projects , Collagen , Ovarian Neoplasms/drug therapy , Tumor Microenvironment
18.
Biotechnol Biofuels Bioprod ; 16(1): 86, 2023 May 23.
Article En | MEDLINE | ID: mdl-37217949

BACKGROUND: Oilseed rape (Brassica napus L.) is known as one of the most important oilseed crops cultivated around the world. However, its production continuously faces a huge challenge of Sclerotinia stem rot (SSR), a destructive disease caused by the fungus Sclerotinia sclerotiorum, resulting in huge yield loss annually. The SSR resistance in B. napus is quantitative and controlled by a set of minor genes. Identification of these genes and pyramiding them into a variety are a major strategy for SSR resistance breeding in B. napus. RESULTS: Here, we performed a genome-wide association study (GWAS) using a natural population of B. napus consisting of 222 accessions to identify BnaA08g25340D (BnMLO2_2) as a candidate gene that regulates the SSR resistance. BnMLO2_2 was a member of seven homolog genes of Arabidopsis Mildew Locus O 2 (MLO2) and the significantly SNPs were mainly distributed in the promoter of BnMLO2_2, suggesting a role of BnMLO2_2 expression level in the regulation of SSR resistance. We expressed BnMLO2_2 in Arabidopsis and the transgenic plants displayed an enhanced SSR resistance. Transcriptome profiling of different tissues of B. napus revealed that BnMLO2_2 had the most expression level in leaf and silique tissues among all the 7 BnMLO2 members and also expressed higher in the SSR resistant accession than in the susceptible accession. In Arabidopsis, mlo2 plants displayed reduced resistance to SSR, whereas overexpression of MLO2 conferred plants an enhanced SSR resistance. Moreover, a higher expression level of MLO2 showed a stronger SSR resistance in the transgenic plants. The regulation of MLO2 in SSR resistance may be associated with the cell death. Collinearity and phylogenetic analysis revealed a large expansion of MLO family in Brassica crops. CONCLUSION: Our study revealed an important role of BnMLO2 in the regulation of SSR resistance and provided a new gene candidate for future improvement of SSR resistance in B. napus and also new insights into understanding of MLO family evolution in Brassica crops.

19.
Pharmacol Ther ; 244: 108385, 2023 04.
Article En | MEDLINE | ID: mdl-36966973

The lipocalin (LCN) family members, a group of small extracellular proteins with 160-180 amino acids in length, can be detected in all kingdoms of life from bacteria to human beings. They are characterized by low similarity of amino acid sequence but highly conserved tertiary structures with an eight-stranded antiparallel ß-barrel which forms a cup-shaped ligand binding pocket. In addition to bind small hydrophobic ligands (i.e., fatty acids, odorants, retinoids, and steroids) and transport them to specific cells, lipocalins (LCNs) can interact with specific cell membrane receptors to activate their downstream signaling pathways, and with soluble macromolecules to form the complex. Consequently, LCNs exhibit great functional diversity. Accumulating evidence has demonstrated that LCN family proteins exert multiple layers of function in the regulation of many physiological processes and human diseases (i.e., cancers, immune disorders, metabolic disease, neurological/psychiatric disorders, and cardiovascular disease). In this review, we firstly introduce the structural and sequence properties of LCNs. Next, six LCNs including apolipoprotein D (ApoD), ApoM, lipocalin 2 (LCN2), LCN10, retinol-binding protein 4 (RBP4), and Lipocalin-type prostaglandin D synthase (L-PGDS) which have been characterized so far are highlighted for their diagnostic/prognostic values and their potential effects on coronary artery disease and myocardial infarction injury. The roles of these 6 LCNs in cardiac hypertrophy, heart failure, diabetes-induced cardiac disorder, and septic cardiomyopathy are also summarized. Finally, their therapeutic potential for cardiovascular disease is discussed in each section.


Cardiovascular Diseases , Humans , Lipocalins/chemistry , Lipocalins/metabolism , Amino Acid Sequence , Receptors, Cell Surface/metabolism , Ligands , Retinol-Binding Proteins, Plasma/metabolism
20.
Plant Physiol ; 192(2): 1028-1045, 2023 05 31.
Article En | MEDLINE | ID: mdl-36883668

Castor (Ricinus communis L.) is a dicotyledonous oilseed crop that can have either spineless or spiny capsules. Spines are protuberant structures that differ from thorns or prickles. The developmental regulatory mechanisms governing spine formation in castor or other plants have remained largely unknown. Herein, using map-based cloning in 2 independent F2 populations, F2-LYY5/DL01 and F2-LYY9/DL01, we identified the RcMYB106 (myb domain protein 106) transcription factor as a key regulator of capsule spine development in castor. Haplotype analyses demonstrated that either a 4,353-bp deletion in the promoter or a single nucleotide polymorphism leading to a premature stop codon in the RcMYB106 gene could cause the spineless capsule phenotype in castor. Results of our experiments indicated that RcMYB106 might target the downstream gene RcWIN1 (WAX INDUCER1), which encodes an ethylene response factor known to be involved in trichome formation in Arabidopsis (Arabidopsis thaliana) to control capsule spine development in castor. This hypothesis, however, remains to be further tested. Nevertheless, our study reveals a potential molecular regulatory mechanism underlying the spine capsule trait in a nonmodel plant species.


Castor Oil , Ricinus communis , Castor Oil/metabolism , Ricinus/genetics , Ricinus/metabolism , Gene Expression Regulation, Plant , Ricinus communis/genetics , Ricinus communis/metabolism
...