Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(7): 8757-8772, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37015492

ABSTRACT

Open set recognition (OSR) aims to correctly recognize the known classes and reject the unknown classes for increasing the reliability of the recognition system. The distance-based loss is often employed in deep neural networks-based OSR methods to constrain the latent representation of known classes. However, the optimization is usually conducted using the nondirectional euclidean distance in a single feature space without considering the potential impact of spatial distribution. To address this problem, we propose orientational distribution learning (ODL) with hierarchical spatial attention for OSR. In ODL, the spatial distribution of feature representation is optimized orientationally to increase the discriminability of decision boundaries for open set recognition. Then, a hierarchical spatial attention mechanism is proposed to assist ODL to capture the global distribution dependencies in the feature space based on spatial relationships. Moreover, a composite feature space is constructed to integrate the features from different layers and different mapping approaches, and it can well enrich the representation information. Finally, a decision-level fusion method is developed to combine the composite feature space and the naive feature space for producing a more comprehensive classification result. The effectiveness of ODL has been demonstrated on various benchmark datasets, and ODL achieves state-of-the-art performance.

2.
IEEE Trans Cybern ; 53(2): 718-731, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34936566

ABSTRACT

In pattern classification, there may not exist labeled patterns in the target domain to train a classifier. Domain adaptation (DA) techniques can transfer the knowledge from the source domain with massive labeled patterns to the target domain for learning a classification model. In practice, some objects in the target domain are easily classified by this classification model, and these objects usually can provide more or less useful information for classifying the other objects in the target domain. So a new method called distribution adaptation based on evidence theory (DAET) is proposed to improve the classification accuracy by combining the complementary information derived from both the source and target domains. In DAET, the objects that are easy to classify are first selected as easy-target objects, and the other objects are regarded as hard-target objects. For each hard-target object, we can obtain one classification result with the assistance of massive labeled patterns in the source domain, and another classification result can be acquired based on the easy-target objects with confidently predicted (pseudo) labels. However, the weights of these classification results may vary because the reliabilities of the used information sources are different. The weights are estimated by mean difference reflecting the information source quality. Then, we discount the classification results with the corresponding weights under the framework of the evidence theory, which is expert at dealing with uncertain information. These discounted classification results are combined by an evidential combination rule for making the final class decision. The effectiveness of DAET for cross-domain pattern classification is evaluated with respect to some advanced DA methods, and the experiment results show DAET can significantly improve the classification accuracy.

3.
Article in English | MEDLINE | ID: mdl-35675250

ABSTRACT

Multisource unsupervised domain adaptation (MUDA) is an important and challenging topic for target classification with the assistance of labeled data in source domains. When we have several labeled source domains, it is difficult to map all source domains and target domain into a common feature space for classifying the targets well. In this article, a new progressive multisource domain adaptation network (PMSDAN) is proposed to further improve the classification performance. PMSDAN mainly consists of two steps for distribution alignment. First, the multiple source domains are integrated as one auxiliary domain to match the distribution with the target domain. By doing this, we can generally reduce the distribution discrepancy between each source and target domains, as well as the discrepancy between different source domains. It can efficiently explore useful knowledge from the integrated source domain. Second, to mine assistance knowledge from each source domain as much as possible, the distribution of the target domain is separately aligned with that of each source domain. A weighted fusion method is employed to combine the multiple classification results for making the final decision. In the optimization of domain adaption, weighted hybrid maximum mean discrepancy (WHMMD) is proposed, and it considers both the interclass and intraclass discrepancies. The effectiveness of the proposed PMSDAN is demonstrated in the experiments comparing with some state-of-the-art methods.

4.
IEEE Trans Cybern ; 52(8): 8101-8113, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33600338

ABSTRACT

In pattern classification, we may have a few labeled data points in the target domain, but a number of labeled samples are available in another related domain (called the source domain). Transfer learning can solve such classification problems via the knowledge transfer from source to target domains. The source and target domains can be represented by heterogeneous features. There may exist uncertainty in domain transformation, and such uncertainty is not good for classification. The effective management of uncertainty is important for improving classification accuracy. So, a new belief-based bidirectional transfer classification (BDTC) method is proposed. In BDTC, the intraclass transformation matrix is estimated at first for mapping the patterns from source to target domains, and this matrix can be learned using the labeled patterns of the same class represented by heterogeneous domains (features). The labeled patterns in the source domain are transferred to the target domain by the corresponding transformation matrix. Then, we learn a classifier using all the labeled patterns in the target domain to classify the objects. In order to take full advantage of the complementary knowledge of different domains, we transfer the query patterns from target to source domains using the K-NN technique and do the classification task in the source domain. Thus, two pieces of classification results can be obtained for each query pattern in the source and target domains, but the classification results may have different reliabilities/weights. A weighted combination rule is developed to combine the two classification results based on the belief functions theory, which is an expert at dealing with uncertain information. We can efficiently reduce the uncertainty of transfer classification via the combination strategy. Experiments on some domain adaptation benchmarks show that our method can effectively improve classification accuracy compared with other related methods.


Subject(s)
Learning , Machine Learning
5.
IEEE Trans Neural Netw Learn Syst ; 32(5): 2015-2029, 2021 05.
Article in English | MEDLINE | ID: mdl-32497012

ABSTRACT

In applications of domain adaptation, there may exist multiple source domains, which can provide more or less complementary knowledge for pattern classification in the target domain. In order to improve the classification accuracy, a decision-level combination method is proposed for the multisource domain adaptation based on evidential reasoning. The classification results obtained from different source domains usually have different reliabilities/weights, which are calculated according to domain consistency. Therefore, the multiple classification results are discounted by the corresponding weights under belief functions framework, and then, Dempster's rule is employed to combine these discounted results. In order to reduce errors, a neighborhood-based cautious decision-making rule is developed to make the class decision depending on the combination result. The object is assigned to a singleton class if its neighborhoods can be (almost) correctly classified. Otherwise, it is cautiously committed to the disjunction of several possible classes. By doing this, we can well characterize the partial imprecision of classification and reduce the error risk as well. A unified utility value is defined here to reflect the benefit of such classification. This cautious decision-making rule can achieve the maximum unified utility value because partial imprecision is considered better than an error. Several real data sets are used to test the performance of the proposed method, and the experimental results show that our new method can efficiently improve the classification accuracy with respect to other related combination methods.

6.
IEEE Trans Cybern ; 45(4): 635-46, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25014989

ABSTRACT

The classification of incomplete patterns is a very challenging task because the object (incomplete pattern) with different possible estimations of missing values may yield distinct classification results. The uncertainty (ambiguity) of classification is mainly caused by the lack of information of the missing data. A new prototype-based credal classification (PCC) method is proposed to deal with incomplete patterns thanks to the belief function framework used classically in evidential reasoning approach. The class prototypes obtained by training samples are respectively used to estimate the missing values. Typically, in a c -class problem, one has to deal with c prototypes, which yield c estimations of the missing values. The different edited patterns based on each possible estimation are then classified by a standard classifier and we can get at most c distinct classification results for an incomplete pattern. Because all these distinct classification results are potentially admissible, we propose to combine them all together to obtain the final classification of the incomplete pattern. A new credal combination method is introduced for solving the classification problem, and it is able to characterize the inherent uncertainty due to the possible conflicting results delivered by different estimations of the missing values. The incomplete patterns that are very difficult to classify in a specific class will be reasonably and automatically committed to some proper meta-classes by PCC method in order to reduce errors. The effectiveness of PCC method has been tested through four experiments with artificial and real data sets.

SELECTION OF CITATIONS
SEARCH DETAIL
...