Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Cancer Discov ; 14(5): 704-706, 2024 May 01.
Article En | MEDLINE | ID: mdl-38690600

SUMMARY: Rosano, Sofyali, Dhiman, and colleagues show that epigenetic-related changes occur in endocrine therapy (ET)-induced dormancy in estrogen receptor positive (ER+) breast cancer, as well as in its reawakening. Targeting these epigenetic changes blocks the entrance to dormancy and reduces the persister cancer cell population, enhancing the cytotoxic effects of ET in vitro. See related article by Rosano et al., p. 866 (9).


Antineoplastic Agents, Hormonal , Breast Neoplasms , Drug Resistance, Neoplasm , Epigenesis, Genetic , Humans , Epigenesis, Genetic/drug effects , Drug Resistance, Neoplasm/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Antineoplastic Agents, Hormonal/pharmacology , Antineoplastic Agents, Hormonal/therapeutic use , Female , Receptors, Estrogen/metabolism , Gene Expression Regulation, Neoplastic/drug effects
2.
Cancer Discov ; : OF1-OF3, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38598672

SUMMARY: Rosano, Sofyali, Dhiman, and colleagues show that epigenetic-related changes occur in endocrine therapy (ET)-induced dormancy in estrogen receptor positive (ER+) breast cancer, as well as in its reawakening. Targeting these epigenetic changes blocks the entrance to dormancy and reduces the persister cancer cell population, enhancing the cytotoxic effects of ET in vitro. See related article by Rosano et al. (9).

...