Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Oncogene ; 41(20): 2833-2845, 2022 05.
Article in English | MEDLINE | ID: mdl-35418692

ABSTRACT

Dysregulation of pericellular proteolysis is strongly implicated in cancer metastasis through alteration of cell invasion and the microenvironment. Matriptase-2 (MT-2) is a membrane-anchored serine protease which can suppress prostate cancer (PCa) cell invasion. In this study, we showed that MT-2 was down-regulated in PCa and could suppress PCa cell motility, tumor growth, and metastasis. Using microarray and biochemical analysis, we found that MT-2 shifted TGF-ß action towards its tumor suppressor function by repressing epithelial-to-mesenchymal transition (EMT) and promoting Smad2 phosphorylation and nuclear accumulation to upregulate two TGF-ß1 downstream effectors (p21 and PAI-1), culminating in hindrance of PCa cell motility and malignant growth. Mechanistically, MT-2 could dramatically up-regulate the expression of nuclear receptor NR4A3 via iron metabolism in PCa cells. MT-2-induced NR4A3 further coactivated Smad2 to activate p21 and PAI-1 expression. In addition, NR4A3 functioned as a suppressor of PCa and mediated MT-2 signaling to inhibit PCa tumorigenesis and metastasis. These results together indicate that NR4A3 sustains MT-2 signaling to suppress PCa cell invasion, tumor growth, and metastasis, and serves as a contextual factor for the TGF-ß/Smad2 signaling pathway in favor of tumor suppression via promoting p21 and PAI-1 expression.


Subject(s)
DNA-Binding Proteins , Membrane Proteins , Prostatic Neoplasms , Receptors, Steroid , Receptors, Thyroid Hormone , Serine Endopeptidases , Cell Line, Tumor , Cell Movement , DNA-Binding Proteins/metabolism , Epithelial-Mesenchymal Transition , Humans , Male , Membrane Proteins/metabolism , Neoplasm Invasiveness , Plasminogen Activator Inhibitor 1 , Prostate/pathology , Prostatic Neoplasms/pathology , Receptors, Steroid/metabolism , Receptors, Thyroid Hormone/metabolism , Serine Endopeptidases/metabolism , Transforming Growth Factor beta1/metabolism , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL