Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 122
1.
Leuk Res ; 115: 106822, 2022 04.
Article En | MEDLINE | ID: mdl-35303493

Mutations characterize diverse human cancers; there is a positive correlation between elevated mutation frequency and tumor progression. One exception is acute myeloid leukemia (AML), which has few clonal single nucleotide mutations. We used highly sensitive and accurate Duplex Sequencing (DS) to show now that AML, in addition, has an extensive repertoire of variants with low allele frequencies, < 1%, which is below the accurate detection limit of most other sequencing methodologies. The subclonal variants are unique to each individual and change in composition, frequency, and sequence context from diagnosis to relapse. Their functional significance is apparent by the observation that many are known variants and cluster within functionally important protein domains. Subclones provide a reservoir of variants that could expand and contribute to the development of drug resistance and relapse. In accord, we accurately identified subclonal variants in AML driver genes NRAS and RUNX1 at allele frequencies between 0.1% and 0.3% at diagnosis, which expanded to comprise a major fraction (14-53%) of the blast population at relapse. Early and accurate detection of subclonal variants with low allele frequency thus offers the opportunity for early intervention, prior to detection of clinical relapse, to improve disease outcome and enhance patient survival.


Leukemia, Myeloid, Acute , Alleles , High-Throughput Nucleotide Sequencing/methods , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Mutation , Recurrence
2.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Article En | MEDLINE | ID: mdl-34330826

Polyguanine tracts (PolyGs) are short guanine homopolymer repeats that are prone to accumulating mutations when cells divide. This feature makes them especially suitable for cell lineage tracing, which has been exploited to detect and characterize precancerous and cancerous somatic evolution. PolyG genotyping, however, is challenging because of the inherent biochemical difficulties in amplifying and sequencing repetitive regions. To overcome this limitation, we developed PolyG-DS, a next-generation sequencing (NGS) method that combines the error-correction capabilities of duplex sequencing (DS) with enrichment of PolyG loci using CRISPR-Cas9-targeted genomic fragmentation. PolyG-DS markedly reduces technical artifacts by comparing the sequences derived from the complementary strands of each original DNA molecule. We demonstrate that PolyG-DS genotyping is accurate, reproducible, and highly sensitive, enabling the detection of low-frequency alleles (<0.01) in spike-in samples using a panel of only 19 PolyG markers. PolyG-DS replicated prior results based on PolyG fragment length analysis by capillary electrophoresis, and exhibited higher sensitivity for identifying clonal expansions in the nondysplastic colon of patients with ulcerative colitis. We illustrate the utility of this method for resolving the phylogenetic relationship among precancerous lesions in ulcerative colitis and for tracing the metastatic dissemination of ovarian cancer. PolyG-DS enables the study of tumor evolution without prior knowledge of tumor driver mutations and provides a tool to perform cost-effective and easily scalable ultra-accurate NGS-based PolyG genotyping for multiple applications in biology, genetics, and cancer research.


Cell Lineage , DNA/genetics , Guanine/chemistry , Neoplasms/genetics , Poly G/genetics , Cell Differentiation , Clonal Evolution , DNA/chemistry , Genotype , Humans
4.
Proc Natl Acad Sci U S A ; 116(52): 26863-26872, 2019 Dec 26.
Article En | MEDLINE | ID: mdl-31806761

Human colorectal cancers (CRCs) contain both clonal and subclonal mutations. Clonal driver mutations are positively selected, present in most cells, and drive malignant progression. Subclonal mutations are randomly dispersed throughout the genome, providing a vast reservoir of mutant cells that can expand, repopulate the tumor, and result in the rapid emergence of resistance, as well as being a major contributor to tumor heterogeneity. Here, we apply duplex sequencing (DS) methodology to quantify subclonal mutations in CRC tumor with unprecedented depth (104) and accuracy (<10-7). We measured mutation frequencies in genes encoding replicative DNA polymerases and in genes frequently mutated in CRC, and found an unexpectedly high effective mutation rate, 7.1 × 10-7. The curve of subclonal mutation accumulation as a function of sequencing depth, using DNA obtained from 5 different tumors, is in accord with a neutral model of tumor evolution. We present a theoretical approach to model neutral evolution independent of the infinite-sites assumption (which states that a particular mutation arises only in one tumor cell at any given time). Our analysis indicates that the infinite-sites assumption is not applicable once the number of tumor cells exceeds the reciprocal of the mutation rate, a circumstance relevant to even the smallest clinically diagnosable tumor. Our methods allow accurate estimation of the total mutation burden in clinical cancers. Our results indicate that no DNA locus is wild type in every malignant cell within a tumor at the time of diagnosis (probability of all cells being wild type, 10-308).

5.
Proc Natl Acad Sci U S A ; 116(49): 24779-24785, 2019 12 03.
Article En | MEDLINE | ID: mdl-31748270

The super-enhancers (SEs) of lineage-specific genes in B cells are off-target sites of somatic hypermutation. However, the inability to detect sufficient numbers of mutations in normal human B cells has precluded the generation of a high-resolution mutational landscape of SEs. Here we captured and sequenced 12 B cell SEs at single-nucleotide resolution from 10 healthy individuals across diverse ethnicities. We detected a total of approximately 9,000 subclonal mutations (allele frequencies <0.1%); of these, approximately 8,000 are present in the BCL6 SE alone. Within the BCL6 SE, we identified 3 regions of clustered mutations in which the mutation frequency is ∼7 × 10-4 Mutational spectra show a predominance of C > T/G > A and A > G/T > C substitutions, consistent with the activities of activation-induced-cytidine deaminase (AID) and the A-T mutator, DNA polymerase η, respectively, in mutagenesis in normal B cells. Analyses of mutational signatures further corroborate the participation of these factors in this process. Single base substitution signatures SBS85, SBS37, and SBS39 were found in the BCL6 SE. While SBS85 is a denoted signature of AID in lymphoid cells, the etiologies of SBS37 and SBS39 are unknown. Our analysis suggests the contribution of error-prone DNA polymerases to the latter signatures. The high-resolution mutation landscape has enabled accurate profiling of subclonal mutations in B cell SEs in normal individuals. By virtue of the fact that subclonal SE mutations are clonally expanded in B cell lymphomas, our studies also offer the potential for early detection of neoplastic alterations.


B-Lymphocytes/metabolism , Enhancer Elements, Genetic/genetics , Proto-Oncogene Proteins c-bcl-6/genetics , Adult , Cell Line , Cytidine Deaminase/genetics , DNA Mutational Analysis/methods , DNA-Directed DNA Polymerase/genetics , Gene Frequency , Genetic Loci/genetics , Healthy Volunteers , Humans , Lymphoma, B-Cell/blood , Lymphoma, B-Cell/diagnosis , Lymphoma, B-Cell/genetics , Middle Aged , Mutation Rate , Proto-Oncogene Proteins c-bcl-6/metabolism , Young Adult
6.
Cell Rep ; 28(1): 132-144.e3, 2019 07 02.
Article En | MEDLINE | ID: mdl-31269435

High-accuracy next-generation DNA sequencing promises a paradigm shift in early cancer detection by enabling the identification of mutant cancer molecules in minimally invasive body fluid samples. We demonstrate 80% sensitivity for ovarian cancer detection using ultra-accurate Duplex Sequencing to identify TP53 mutations in uterine lavage. However, in addition to tumor DNA, we also detect low-frequency TP53 mutations in nearly all lavages from women with and without cancer. These mutations increase with age and share the selection traits of clonal TP53 mutations commonly found in human tumors. We show that low-frequency TP53 mutations exist in multiple healthy tissues, from newborn to centenarian, and progressively increase in abundance and pathogenicity with older age across tissue types. Our results illustrate that subclonal cancer evolutionary processes are a ubiquitous part of normal human aging, and great care must be taken to distinguish tumor-derived from age-associated mutations in high-sensitivity clinical cancer diagnostics.


Aging/genetics , Clonal Evolution/genetics , DNA, Neoplasm/genetics , Ovarian Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Aged, 80 and over , Cell-Free Nucleic Acids/genetics , Databases, Genetic , Female , High-Throughput Nucleotide Sequencing , Humans , Infant, Newborn , Middle Aged , Mutation , Ovarian Neoplasms/diagnosis , Ovarian Neoplasms/pathology , Selection, Genetic , Sequence Analysis, DNA , Uterus/metabolism
7.
Clin Cancer Res ; 24(21): 5321-5334, 2018 11 01.
Article En | MEDLINE | ID: mdl-30042204

Purpose: Sequential treatment with targeted therapies can result in complex combinations of resistance mutations in drug targets. This mutational complexity has spurred the development of pan-target inhibitors, i.e., therapies for which no single target mutation can cause resistance. Because the propensity for on- versus off-target resistance varies across cancer types, a deeper understanding of the mutational burden in drug targets could rationalize treatment outcomes and prioritize pan-target inhibitors for indications where on-target mutations are most likely.Experimental Design: To measure and model the mutational landscape of a drug target at high resolution, we integrated single-molecule Duplex Sequencing of the ABL1 gene in Philadelphia-positive (Ph+) leukemias with computational simulations.Results: A combination of drug target mutational burden and tumor-initiating cell fraction is sufficient to predict that most patients with chronic myeloid leukemia are unlikely to harbor ABL1 resistance mutations at the time of diagnosis, rationalizing the exceptional success of targeted therapy in this setting. In contrast, our analysis predicts that many patients with Ph+ acute lymphoblastic leukemia (Ph+ ALL) harbor multiple preexisting resistant cells with single mutants. The emergence of compound mutations can be traced to initial use of an ABL1 inhibitor that is susceptible to resistance from single point mutations.Conclusions: These results argue that early use of therapies that achieve pan-inhibition of ABL1 resistance mutants might improve outcomes in Ph+ ALL. Our findings show how a deep understanding of the mutational burden in drug targets can be quantitatively coupled to phenotypic heterogeneity to rationalize clinical phenomena. Clin Cancer Res; 24(21); 5321-34. ©2018 AACR.


Drug Resistance, Neoplasm/genetics , Leukemia/genetics , Philadelphia Chromosome , Cell Line, Tumor , Clonal Evolution , DNA Mutational Analysis , Genetic Heterogeneity , High-Throughput Nucleotide Sequencing , Humans , Leukemia/diagnosis , Leukemia/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/diagnosis , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mutation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prognosis , Sequence Analysis, DNA
8.
Nat Rev Genet ; 19(5): 269-285, 2018 05.
Article En | MEDLINE | ID: mdl-29576615

Mutations, the fuel of evolution, are first manifested as rare DNA changes within a population of cells. Although next-generation sequencing (NGS) technologies have revolutionized the study of genomic variation between species and individual organisms, most have limited ability to accurately detect and quantify rare variants among the different genome copies in heterogeneous mixtures of cells or molecules. We describe the technical challenges in characterizing subclonal variants using conventional NGS protocols and the recent development of error correction strategies, both computational and experimental, including consensus sequencing of single DNA molecules. We also highlight major applications for low-frequency mutation detection in science and medicine, describe emerging methodologies and provide our vision for the future of DNA sequencing.


Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Mutation , DNA Mutational Analysis/methods , Humans
9.
Proc Natl Acad Sci U S A ; 114(35): 9415-9420, 2017 08 29.
Article En | MEDLINE | ID: mdl-28798064

Transcriptional mutagenesis (TM) due to misincorporation during RNA transcription can result in mutant RNAs, or epimutations, that generate proteins with altered properties. TM has long been hypothesized to play a role in aging, cancer, and viral and bacterial evolution. However, inadequate methodologies have limited progress in elucidating a causal association. We present a high-throughput, highly accurate RNA sequencing method to measure epimutations with single-molecule sensitivity. Accurate RNA consensus sequencing (ARC-seq) uniquely combines RNA barcoding and generation of multiple cDNA copies per RNA molecule to eliminate errors introduced during cDNA synthesis, PCR, and sequencing. The stringency of ARC-seq can be scaled to accommodate the quality of input RNAs. We apply ARC-seq to directly assess transcriptome-wide epimutations resulting from RNA polymerase mutants and oxidative stress.


Epigenesis, Genetic , Mutagenesis , RNA/genetics , Animals , Base Sequence , Mutation , Oxidative Stress , Saccharomyces , Transcription, Genetic
10.
DNA Repair (Amst) ; 56: 7-15, 2017 08.
Article En | MEDLINE | ID: mdl-28652129

For the last 40 years the authors have collaborated on trying to understand the complexities of human cancer by formulating testable mathematical models that are based on mutation accumulation in human malignancies. We summarize the concepts encompassed by multiple mutations in human cancers in the context of source, accumulation during carcinogenesis and tumor progression, and therapeutic consequences. We conclude that the efficacious treatment of human cancer by targeted therapy will involve individualized, uniquely directed specific agents singly and in simultaneous combinations, and take into account the importance of targeting resistant subclonal mutations, particularly those subclones with alterations in DNA repair genes, DNA polymerase, and other genes required to maintain genetic stability.


Carcinogenesis , Models, Biological , Mutation , Neoplasms/genetics , DNA Repair , DNA Replication , DNA, Neoplasm/metabolism , Humans , Neoplasms/pathology
11.
Sci Rep ; 7: 44081, 2017 03 09.
Article En | MEDLINE | ID: mdl-28276523

Loss-of-function mutations in the WRN helicase gene cause Werner syndrome- a progeroid syndrome with an elevated risk of cancer and other age-associated diseases. Large numbers of single nucleotide polymorphisms have been identified in WRN. We report here the organismal, cellular, and molecular phenotypes of variant rs3087425 (c. 2500C > T) that results in an arginine to cysteine substitution at residue 834 (R834C) and up to 90% reduction of WRN helicase activity. This variant is present at a high (5%) frequency in Mexico, where we identified 153 heterozygous and three homozygous individuals among 3,130 genotyped subjects. Family studies of probands identified ten additional TT homozygotes. Biochemical analysis of WRN protein purified from TT lymphoblast cell lines confirmed that the R834C substitution strongly and selectively reduces WRN helicase, but not exonuclease activity. Replication track analyses showed reduced replication fork progression in some homozygous cells following DNA replication stress. Among the thirteen TT homozygotes, we identified a previously unreported and statistically significant gender bias in favor of males (p = 0.0016), but none of the clinical findings associated with Werner syndrome. Our results indicate that WRN helicase activity alone is not rate-limiting for the development of clinical WS.


Homozygote , Mutation, Missense , Phenotype , Werner Syndrome Helicase/metabolism , Werner Syndrome/genetics , Adolescent , Adult , Aged , Amino Acid Substitution , Family , Female , Humans , Male , Middle Aged , Werner Syndrome/enzymology , Werner Syndrome/pathology , Werner Syndrome Helicase/genetics
12.
Proc Natl Acad Sci U S A ; 114(15): E3101-E3109, 2017 04 11.
Article En | MEDLINE | ID: mdl-28351974

Aflatoxin B1 (AFB1) and/or hepatitis B and C viruses are risk factors for human hepatocellular carcinoma (HCC). Available evidence supports the interpretation that formation of AFB1-DNA adducts in hepatocytes seeds a population of mutations, mainly G:C→T:A, and viral processes synergize to accelerate tumorigenesis, perhaps via inflammation. Responding to a need for early-onset evidence predicting disease development, highly accurate duplex sequencing was used to monitor acquisition of high-resolution mutational spectra (HRMS) during the process of hepatocarcinogenesis. Four-day-old male mice were treated with AFB1 using a regimen that induced HCC within 72 wk. For analysis, livers were separated into tumor and adjacent cellular fractions. HRMS of cells surrounding the tumors revealed predominantly G:C→T:A mutations characteristic of AFB1 exposure. Importantly, 25% of all mutations were G→T in one trinucleotide context (CGC; the underlined G is the position of the mutation), which is also a hotspot mutation in human liver tumors whose incidence correlates with AFB1 exposure. The technology proved sufficiently sensitive that the same distinctive spectrum was detected as early as 10 wk after dosing, well before evidence of neoplasia. Additionally, analysis of tumor tissue revealed a more complex pattern than observed in surrounding hepatocytes; tumor HRMS were a composite of the 10-wk spectrum and a more heterogeneous set of mutations that emerged during tumor outgrowth. We propose that the 10-wk HRMS reflects a short-term mutational response to AFB1, and, as such, is an early detection metric for AFB1-induced liver cancer in this mouse model that will be a useful tool to reconstruct the molecular etiology of human hepatocarcinogenesis.


Aflatoxin B1/genetics , Biomarkers/metabolism , Carcinogenesis/genetics , Carcinoma, Hepatocellular/genetics , DNA Adducts/genetics , Liver Neoplasms/genetics , Mutation , Aflatoxin B1/toxicity , Animals , Carcinogenesis/chemically induced , Carcinogenesis/pathology , Carcinoma, Hepatocellular/chemically induced , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , DNA Adducts/toxicity , Female , Humans , Liver Neoplasms/chemically induced , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Male , Mice , Mice, Inbred C3H , Mice, Inbred C57BL
14.
Proc Natl Acad Sci U S A ; 113(36): 10151-6, 2016 09 06.
Article En | MEDLINE | ID: mdl-27543334

Cockayne syndrome (CS) and xeroderma pigmentosum (XP) are human photosensitive diseases with mutations in the nucleotide excision repair (NER) pathway, which repairs DNA damage from UV exposure. CS is mutated in the transcription-coupled repair (TCR) branch of the NER pathway and exhibits developmental and neurological pathologies. The XP-C group of XP patients have mutations in the global genome repair (GGR) branch of the NER pathway and have a very high incidence of UV-induced skin cancer. Cultured cells from both diseases have similar sensitivity to UV-induced cytotoxicity, but CS patients have never been reported to develop cancer, although they often exhibit photosensitivity. Because cancers are associated with increased mutations, especially when initiated by DNA damage, we examined UV-induced mutagenesis in both XP-C and CS cells, using duplex sequencing for high-sensitivity mutation detection. Duplex sequencing detects rare mutagenic events, independent of selection and in multiple loci, enabling examination of all mutations rather than just those that confer major changes to a specific protein. We found telomerase-positive normal and CS-B cells had increased background mutation frequencies that decreased upon irradiation, purging the population of subclonal variants. Primary XP-C cells had increased UV-induced mutation frequencies compared with normal cells, consistent with their GGR deficiency. CS cells, in contrast, had normal levels of mutagenesis despite their TCR deficiency. The lack of elevated UV-induced mutagenesis in CS cells reveals that their TCR deficiency, although increasing cytotoxicity, is not mutagenic. Therefore the absence of cancer in CS patients results from the absence of UV-induced mutagenesis rather than from enhanced lethality.


Cockayne Syndrome/genetics , DNA Repair , DNA/chemistry , Mutation , Ultraviolet Rays/adverse effects , Xeroderma Pigmentosum/genetics , Cockayne Syndrome/metabolism , Cockayne Syndrome/pathology , DNA/metabolism , DNA Breaks, Double-Stranded , Fibroblasts/cytology , Fibroblasts/metabolism , Fibroblasts/radiation effects , Healthy Volunteers , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Primary Cell Culture , Sequence Analysis, DNA , Skin Neoplasms/etiology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Skin Neoplasms/prevention & control , Xeroderma Pigmentosum/metabolism , Xeroderma Pigmentosum/pathology
15.
Proc Natl Acad Sci U S A ; 113(21): 6005-10, 2016 May 24.
Article En | MEDLINE | ID: mdl-27152024

Current sequencing methods are error-prone, which precludes the identification of low frequency mutations for early cancer detection. Duplex sequencing is a sequencing technology that decreases errors by scoring mutations present only in both strands of DNA. Our aim was to determine whether duplex sequencing could detect extremely rare cancer cells present in peritoneal fluid from women with high-grade serous ovarian carcinomas (HGSOCs). These aggressive cancers are typically diagnosed at a late stage and are characterized by TP53 mutations and peritoneal dissemination. We used duplex sequencing to analyze TP53 mutations in 17 peritoneal fluid samples from women with HGSOC and 20 from women without cancer. The tumor TP53 mutation was detected in 94% (16/17) of peritoneal fluid samples from women with HGSOC (frequency as low as 1 mutant per 24,736 normal genomes). Additionally, we detected extremely low frequency TP53 mutations (median mutant fraction 1/13,139) in peritoneal fluid from nearly all patients with and without cancer (35/37). These mutations were mostly deleterious, clustered in hotspots, increased with age, and were more abundant in women with cancer than in controls. The total burden of TP53 mutations in peritoneal fluid distinguished cancers from controls with 82% sensitivity (14/17) and 90% specificity (18/20). Age-associated, low frequency TP53 mutations were also found in 100% of peripheral blood samples from 15 women with and without ovarian cancer (none with hematologic disorder). Our results demonstrate the ability of duplex sequencing to detect rare cancer cells and provide evidence of widespread, low frequency, age-associated somatic TP53 mutation in noncancerous tissue.


Ascitic Fluid , High-Throughput Nucleotide Sequencing , Mutation , Ovarian Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Adult , Aged , Female , Humans , Middle Aged , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/pathology , Tumor Suppressor Protein p53/metabolism
16.
Cancer Res ; 76(15): 4569-78, 2016 08 01.
Article En | MEDLINE | ID: mdl-27197159

Rare stochastic mutations may accumulate during dormancy of stem-like cells, but technical limitations in DNA sequencing have limited exploring this possibility. In this study, we employed a recently established deep-sequencing method termed Duplex Sequencing to conduct a genome-wide analysis of mitochondrial (mt) DNA mutations in a human breast stem cell model that recapitulates the sequential stages of breast carcinogenesis. Using this method, we found significant differences in mtDNA among normal stem cells, immortal/preneoplastic cells, and tumorigenic cells. Putative cancer stem-like cell (CSC) populations and mtDNA copy numbers increased as normal stem cells become tumorigenic cells. Transformed cells exhibited lower rare mutation frequencies of whole mtDNA than did normal stem cells. The predicted mtDNA rare mutation pathogenicity was significantly lower in tumorigenic cells than normal stem cells. Major rare mutation types in normal stem cells are C>T/G>A and T>C/A>G transitions, while only C>T/G>A are major types in transformed cells. We detected a total of 1,220 rare point mutations, 678 of which were unreported previously. With only one possible exception (m10342T>C), we did not find specific mutations characterizing mtDNA in human breast CSCs; rather, the mitochondrial genome of CSCs displayed an overall decrease in rare mutations. On the basis of our work, we suggest that this decrease (in particular T>C/A>G transitions), rather than the presence of specific mitochondrial mutations, may constitute an early biomarker for breast cancer detection. Our findings support the hypothesis that the mitochondrial genome is altered greatly as a result of the transformation of normal stem cells to CSCs, and that mtDNA mutation signatures may aid in delineating normal stem cells from CSCs. Cancer Res; 76(15); 4569-78. ©2016 AACR.


Breast Neoplasms/genetics , Breast/pathology , Mitochondria/metabolism , Carcinogenesis/genetics , Female , Humans , Mutagenesis
17.
Cancer Res ; 76(8): 2057-9, 2016 04 15.
Article En | MEDLINE | ID: mdl-27197248

The mutator phenotype hypothesis was postulated more than 40 years ago. It was based on the multiple enzymatic steps required to precisely replicate the 6 billion bases in the human genome each time a normal cell divides. A reduction in this accuracy during tumor progression could be responsible for the striking heterogeneity of malignant cells within a tumor and for the rapidity by which cancers become resistant to therapy. Cancer Res; 76(8); 2057-9. ©2016 AACRSee related article by Loeb et al. Cancer Res. 1974;34:2311-21.


Neoplasms/genetics , Neoplasms/pathology , Disease Progression , Humans , Mutation , Phenotype
18.
Genome Med ; 8(1): 30, 2016 Mar 17.
Article En | MEDLINE | ID: mdl-26987311

Signatures of mutagenesis provide a powerful tool for dissecting the role of somatic mutations in both normal and pathological processes. Significantly, cancer genomes are dominated by mutation signatures distinct from those that accumulate in normal tissues with age, with potentially important translational implications.


Aging/genetics , Genome, Human , Mutation Rate , Mutation , Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , Humans
19.
Cancer Res ; 76(4): 765-6, 2016 Feb 15.
Article En | MEDLINE | ID: mdl-26880808

The recognition that tobacco smoke is carcinogenic led to the most significant and successful effort at reducing cancer incidence in human history. A major milestone of this effort was the publication in Cancer Research by Wynder and colleagues, which demonstrated the ability of tobacco tars to produce tumors in mice. This study provided a powerful link between the epidemiology of cancer and mechanisms of carcinogenesis. This commentary asserts that we have a moral obligation to translate our success in reducing lung cancer in the United States to the 1.25 billion smokers throughout the rest of the world. See related article by Wynder et al., Cancer Res 1953;13:855-64.


Neoplasms/epidemiology , Neoplasms/etiology , Nicotiana/adverse effects , Humans
20.
Nat Rev Clin Oncol ; 13(6): 335-47, 2016 06.
Article En | MEDLINE | ID: mdl-26483300

Clinical oncology is being revolutionized by the increasing use of molecularly targeted therapies. This paradigm holds great promise for improving cancer treatment; however, allocating specific therapies to the patients who are most likely to derive a durable benefit continues to represent a considerable challenge. Evidence continues to emerge that cancers are characterized by extensive intratumour genetic heterogeneity, and that patients being considered for treatment with a targeted agent might, therefore, already possess resistance to the drug in a minority of cells. Indeed, multiple examples of pre-existing subclonal resistance mutations to various molecularly targeted agents have been described, which we review herein. Early detection of pre-existing or emerging drug resistance could enable more personalized use of targeted cancer therapy, as patients could be stratified to receive the therapies that are most likely to be effective. We consider how monitoring of drug resistance could be incorporated into clinical practice to optimize the use of targeted therapies in individual patients.


Drug Resistance, Neoplasm/genetics , Mutation/genetics , Neoplasms/genetics , ErbB Receptors/antagonists & inhibitors , Fusion Proteins, bcr-abl/antagonists & inhibitors , Genes, erbB-1/genetics , Humans , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/genetics , MAP Kinase Signaling System/drug effects , Molecular Targeted Therapy/methods , Mutation/drug effects , Neoplasms/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins c-kit/antagonists & inhibitors
...