Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 12491, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37528129

ABSTRACT

Animal venoms are rich sources of neuroactive compounds, including anti-inflammatory, antiepileptic, and antinociceptive molecules. Our study identified a protonectin peptide from the wasp Parachartergus fraternus' venom using mass spectrometry and cDNA library construction. Using this peptide as a template, we designed a new peptide, protonectin-F, which exhibited higher antinociceptive activity and less motor impairment compared to protonectin. In drug interaction experiments with naloxone and AM251, Protonectin-F's activity was decreased by opioid and cannabinoid antagonism, two critical antinociception pathways. Further experiments revealed that this effect is most likely not induced by direct action on receptors but by activation of the descending pain control pathway. We noted that protonectin-F induced less tolerance in mice after repeated administration than morphine. Protonectin-F was also able to decrease TNF-α production in vitro and modulate the inflammatory response, which can further contribute to its antinociceptive activity. These findings suggest that protonectin-F may be a potential molecule for developing drugs to treat pain disorders with fewer adverse effects. Our results reinforce the biotechnological importance of animal venom for developing new molecules of clinical interest.


Subject(s)
Peptides , Wasp Venoms , Mice , Animals , Wasp Venoms/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Morphine/pharmacology , Analgesics, Opioid , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Pain/drug therapy , Analgesics/pharmacology , Analgesics/therapeutic use
2.
Front Pharmacol ; 14: 1150313, 2023.
Article in English | MEDLINE | ID: mdl-36937883

ABSTRACT

Kappa opioid receptors have exceptional potential as an analgesic target, seemingly devoid of many problematic Mu receptor side-effects. Kappa-selective, small molecule pharmaceutical agents have been developed, but centrally mediated side-effects limit clinical translation. We modify endogenous dynorphin peptides to improve drug-likeness and develop safer KOP receptor agonists for clinical use. Using rational, iterative design, we developed a series of potent, selective, and metabolically stable peptides from dynorphin 1-7. Peptides were assessed for in vitro cAMP-modulation against three opioid receptors, metabolic stability, KOP receptor selectivity, desensitisation and pERK-signalling capability. Lead peptides were evaluated for in vivo efficacy in a rat model of inflammatory nociception. A library of peptides was synthesised and assessed for pharmacological and metabolic stability. Promising peptide candidates showed low nanomolar KOP receptor selectivity in cAMP assay, and improved plasma and trypsin stability. Selected peptides showed bias towards cAMP signalling over pERK activity, also demonstrating reduced desensitisation. In vivo, two peptides showed significant opioid-like antinociception comparable to morphine and U50844H. These highly potent and metabolically stable peptides are promising opioid analgesic leads for clinical translation. Since they are somewhat biased peptide Kappa agonists they may lack many significant side-effects, such as tolerance, addiction, sedation, and euphoria/dysphoria, common to opioid analgesics.

3.
Mol Pharm ; 19(11): 4055-4066, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36149013

ABSTRACT

Clozapine is the most effective antipsychotic for treatment-resistant schizophrenia. However, it causes many adverse drug reactions (ADRs), which lead to poor treatment outcomes. Nose-to-brain (N2B) drug delivery offers a promising approach to reduce peripheral ADRs by minimizing systemic drug exposure. The aim of the present study was to develop and characterize clozapine-loaded nanoemulsion sol-gel (CLZ-NESG) for intranasal administration using high energy sonication method. A range of oils, surfactants, and cosurfactants were screened with the highest clozapine solubility selected for the development of nanoemulsion. Pseudoternary phase diagrams were constructed using a low-energy (spontaneous) method to identify the microemulsion regions (i.e., where mixtures were transparent). The final formulation, CLZ-NESG (pH 5.5 ± 0.2), comprising 1% w/w clozapine, 1% w/w oleic acid, 10% w/w polysorbate 80/propylene glycol (3:1), and 20% w/w poloxamer 407 (P407) solution, had an average globule size of ≤30 nm with PDI 0.2 and zeta potential of -39.7 ± 1.5 mV. The in vitro cumulative drug release of clozapine from the nanoemulsion gel at 34 °C (temperature of nasal cavity) after 72 h was 38.9 ± 4.6% compared to 84.2 ± 3.9% with the control solution. The permeation study using sheep nasal mucosa as diffusion barriers confirmed a sustained release of clozapine with 56.2 ± 2.3% cumulative drug permeated after 8 h. Additionally, the histopathological examination found no severe nasal ciliotoxicity on the mucosal tissues. The thermodynamic stability studies showed that the gel strength and viscosity of CLZ-NESG decreased after temperature cycling but was still seen to be in "gel" form at nasal temperature. However, the accelerated storage stability study showed a decrease in drug concentration after 3 months, which can be expected at elevated stress conditions. The formulation developed in this study showed desirable physicochemical properties for intranasal administration, highlighting the potential value of a nanoemulsion gel for improving drug bioavailability of clozapine for N2B delivery.


Subject(s)
Clozapine , Nanoparticles , Animals , Sheep , Administration, Intranasal , Clozapine/pharmacology , Emulsions/chemistry , Chemistry, Pharmaceutical , Particle Size , Gels , Nasal Mucosa , Nanoparticles/chemistry
4.
Commun Biol ; 3(1): 782, 2020 12 17.
Article in English | MEDLINE | ID: mdl-33335291

ABSTRACT

Protease-activated receptor-2 (PAR2) has been implicated in multiple pathophysiologies but drug discovery is challenging due to low small molecule tractability and a complex activation mechanism. Here we report the pharmacological profiling of a potent new agonist, suggested by molecular modelling to bind in the putative orthosteric site, and two novel PAR2 antagonists with distinctly different mechanisms of inhibition. We identify coupling between different PAR2 binding sites. One antagonist is a competitive inhibitor that binds to the orthosteric site, while a second antagonist is a negative allosteric modulator that binds at a remote site. The allosteric modulator shows probe dependence, more effectively inhibiting peptide than protease activation of PAR2 signalling. Importantly, both antagonists are active in vivo, inhibiting PAR2 agonist-induced acute paw inflammation in rats and preventing activation of mast cells and neutrophils. These results highlight two distinct mechanisms of inhibition that potentially could be targeted for future development of drugs that modulate PAR2.


Subject(s)
Allosteric Regulation , Allosteric Site , Ligands , Receptor, PAR-2/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Binding Sites , Dose-Response Relationship, Drug , Models, Molecular , Molecular Conformation , Molecular Structure , Receptor, PAR-2/antagonists & inhibitors , Receptor, PAR-2/metabolism , Signal Transduction
5.
J Med Chem ; 63(2): 529-541, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31910011

ABSTRACT

Structure-activity relationships for a series of small-molecule thiophenes resulted in potent and selective antagonism of human Complement C3a receptor. The compounds are about 100-fold more potent than the most reported antagonist SB290157. A new compound JR14a was among the most potent of the new antagonists in vitro, assessed by (a) inhibition of intracellular calcium release (IC50 10 nM) induced in human monocyte-derived macrophages by 100 nM C3a, (b) inhibition of ß-hexosaminidase secretion (IC50 8 nM) from human LAD2 mast cells degranulated by 100 nM C3a, and (c) selectivity for human C3aR over C5aR. JR14a was metabolically stable in rat plasma and in rat liver microsomes and efficacious in rats when given orally to suppress rat paw inflammation, macrophage and mast cell activation, and histopathology induced by intraplantar paw administration of a C3aR agonist. Potent C3aR antagonists are now available for interrogating C3a receptor activation and suppressing C3aR-mediated inflammation in mammalian physiology and disease.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arginine/analogs & derivatives , Benzhydryl Compounds/pharmacology , Complement C3a , Receptors, Complement/antagonists & inhibitors , Thiophenes/pharmacology , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Arginine/pharmacokinetics , Arginine/pharmacology , Benzhydryl Compounds/pharmacokinetics , Calcium/metabolism , Hexosaminidases/metabolism , Humans , Macrophages/drug effects , Mast Cells , Microsomes, Liver/drug effects , Microsomes, Liver/metabolism , Rats , Rats, Wistar , Small Molecule Libraries , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/pharmacokinetics
6.
Chem Commun (Camb) ; 55(89): 13362-13365, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31631195

ABSTRACT

Rule-of-five parameters and membrane permeabilities have been routinely used to guide development of orally bioavailabile drugs. Here we compare enantiomeric pairs of cyclic hexapeptides with identical rule-of-five parameters and membrane permeabilities. For each enantiomeric pair, the isomer with more l- than d-amino acids is much more orally bioavailable in rats, more metabolically stable to rat liver microsomes, and cleared more slowly in vivo.


Subject(s)
Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Microsomes, Liver/chemistry , Microsomes, Liver/metabolism , Molecular Conformation , Peptides, Cyclic/administration & dosage , Rats , Stereoisomerism
7.
Nephrology (Carlton) ; 24(9): 983-991, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31314137

ABSTRACT

AIM: Protease-activated receptor 2 (PAR2) has been implicated in the development of renal inflammation and fibrosis. In particular, activation of PAR2 in cultured tubular epithelial cells induces extracellular signal-regulated kinase signalling and secretion of fibronectin, C-C Motif Chemokine Ligand 2 (CCL2) and transforming growth factor-ß1 (TGF-ß1), suggesting a role in tubulointerstitial inflammation and fibrosis. We tested this hypothesis in unilateral ureteric obstruction (UUO) in which ongoing tubular epithelial cell damage drives tubulointerstitial inflammation and fibrosis. METHODS: Unilateral ureteric obstruction surgery was performed in groups (n = 9/10) of Par2-/- and wild type (WT) littermate mice which were killed 7 days later. Non-experimental mice were controls. RESULTS: Wild type mice exhibited a 5-fold increase in Par2 messenger RNA (mRNA) levels in the UUO kidney. In situ hybridization localized Par2 mRNA expression to tubular epithelial cells in normal kidney, with a marked increase in Par2 mRNA expression by tubular cells, including damaged tubular cells, in WT UUO kidney. Tubular damage (tubular dilation, increased KIM-1 and decreased α-Klotho expression) and tubular signalling (extracellular signal-regulated kinase phosphorylation) seen in WT UUO were not altered in Par2-/- UUO. In addition, macrophage infiltration, up-regulation of M1 (NOS2) and M2 (CD206) macrophage markers, and up-regulation of pro-inflammatory molecules (tumour necrosis factor, CCL2, interleukin-36α) in WT UUO kidney were unchanged in Par2-/- UUO. Finally, the accumulation of α-SMA+ myofibroblasts, deposition of collagen IV and expression of pro-fibrotic factors (CTGF, TGF-ß1) were not different between WT and Par2-/- UUO mice. CONCLUSION: Protease-activated receptor 2 expression is substantially up-regulated in tubular epithelial cells in the obstructed kidney, but this does not contribute to the development of tubular damage, renal inflammation or fibrosis.


Subject(s)
Kidney Tubules/metabolism , Nephritis, Interstitial/etiology , Receptor, PAR-2/metabolism , Ureteral Obstruction/complications , Animals , Disease Models, Animal , Fibrosis , Gene Expression Regulation , Kidney Tubules/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nephritis, Interstitial/genetics , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/pathology , Receptor, PAR-2/deficiency , Receptor, PAR-2/genetics , Signal Transduction , Ureteral Obstruction/genetics , Ureteral Obstruction/metabolism , Ureteral Obstruction/pathology
8.
Clin Exp Pharmacol Physiol ; 46(5): 456-464, 2019 05.
Article in English | MEDLINE | ID: mdl-30811624

ABSTRACT

Glomerular crescent formation is a hallmark of rapidly progressive forms of glomerulonephritis. Thrombosis and macrophage infiltration are features of crescent formation in human and experimental kidney disease. Protease-activated receptor-2 (PAR-2) is a G-protein coupled receptor that links coagulation and inflammation. This study investigated whether pharmacological inhibition of PAR-2 can suppress glomerular crescent formation in rat nephrotoxic serum nephritis (NTN). Disease was induced in Wistar Kyoto rats by immunisation with sheep IgG followed by administration of sheep nephrotoxic serum. Rats (n = 8/group) received the PAR-2 antagonist (GB88, 10 mg/kg/p.o.), vehicle or no treatment starting 3 days before nephrotoxic serum injection and continuing until day 14. Vehicle and untreated rats developed thrombosis and macrophage infiltration in the glomerular tuft and Bowman's space in conjunction with prominent crescent formation. Activation of JNK signalling and proliferation in parietal epithelial cells was associated with crescent formation. GB88 treatment significantly reduced crescent formation with a substantial reduction in glomerular thrombosis, reduced macrophage infiltration in Bowman's space, and reduced activation of parietal epithelial cells. However, GB88 did not protect against the development of proteinuria, renal function impairment, inflammation or tubular cell damage in the NTN model. In conclusion, PAR-2 plays a specific role in glomerular crescent formation by promoting glomerular thrombosis, macrophage accumulation in Bowman's space and activation of parietal epithelial cells.


Subject(s)
Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Nephritis/drug therapy , Receptor, PAR-2/antagonists & inhibitors , Animals , Disease Models, Animal , Kidney Glomerulus/metabolism , Male , Nephritis/metabolism , Nephritis/pathology , Oligopeptides/pharmacology , Oligopeptides/therapeutic use , Rats , Rats, Wistar
9.
Article in English | MEDLINE | ID: mdl-30602509

ABSTRACT

Wollamides are cyclic hexapeptides, recently isolated from an Australian soil Streptomyces isolate, that exhibit promising in vitro antimycobacterial activity against Mycobacterium bovis Bacille Calmette Guérin without displaying cytotoxicity against a panel of mammalian cells. Here, we report the synthesis and antimycobacterial activity of 36 new synthetic wollamides, collated with all known synthetic and natural wollamides, to reveal structure characteristics responsible for in vitro growth-inhibitory activity against Mycobacterium tuberculosis (H37Rv, H37Ra, CDC1551, HN878, and HN353). The most potent antimycobacterial wollamides were those where residue VI d-Orn (wollamide B) was replaced by d-Arg (wollamide B1) or d-Lys (wollamide B2), with all activity being lost when residue VI was replaced by Gly, l-Arg, or l-Lys (wollamide B3). Substitution of other amino acid residues mainly reduced or ablated antimycobacterial activity. Significantly, whereas wollamide B2 was the most potent in restricting M. tuberculosisin vitro, wollamide B1 restricted M. tuberculosis intracellular burden in infected macrophages. Wollamide B1 synergized with pretomanid (PA-824) in inhibiting M. tuberculosisin vitro growth but did not antagonize prominent first- and second-line tuberculosis antibiotics. Furthermore, wollamide B1 exerted bactericidal activity against nonreplicating M. tuberculosis and impaired growth of multidrug- and extensively drug-resistant clinical isolates. In vivo pharmacokinetic profiles for wollamide B1 in rats and mice encourage further optimization of the wollamide pharmacophore for in vivo bioavailability. Collectively, these observations highlight the potential of the wollamide antimycobacterial pharmacophore.


Subject(s)
Mycobacterium tuberculosis/drug effects , Peptides, Cyclic/pharmacology , Tuberculosis/drug therapy , Animals , Cell Line, Tumor , Drug Resistance, Multiple, Bacterial/genetics , Hep G2 Cells , Humans , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/isolation & purification , Rats , Structure-Activity Relationship
10.
Nat Commun ; 8(1): 351, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839129

ABSTRACT

Complement C3a is an important protein in innate and adaptive immunity, but its specific roles in vivo remain uncertain because C3a degrades rapidly to form the C3a-desArg protein, which does not bind to the C3a receptor and is indistinguishable from C3a using antibodies. Here we develop the most potent, stable and highly selective small molecule modulators of C3a receptor, using a heterocyclic hinge to switch between agonist and antagonist ligand conformations. This enables characterization of C3 areceptor-selective pro- vs. anti-inflammatory actions in human mast cells and macrophages, and in rats. A C3a receptor-selective agonist induces acute rat paw inflammation by first degranulating mast cells before activating macrophages and neutrophils. An orally administered C3a receptor-selective antagonist inhibits mast cell degranulation, thereby blocking recruitment and activation of macrophages and neutrophils, expression of inflammatory mediators and inflammation in a rat paw edema model. These novel tools reveal the mechanism of C3a-induced inflammation and provide new insights to complement-based medicines.Complement C3a is an important protein in innate and adaptive immunity, but its roles in vivo are unclear. Here the authors develop novel chemical agonists and antagonists for the C3a receptor, and show that they modulate mast cell degranulation and inflammation in a rat paw edema model.


Subject(s)
Complement C3a/physiology , Immunity, Innate/genetics , Receptors, Complement/chemistry , Animals , Anti-Asthmatic Agents/pharmacology , Cell Degranulation/drug effects , Cells, Cultured , Complement C3a/genetics , Complement C3a/metabolism , Cromolyn Sodium/pharmacology , Humans , Ligands , Macrophages/immunology , Male , Mast Cells/immunology , Neutrophils/immunology , Protein Conformation , Rats , Rats, Wistar , Receptors, Complement/agonists , Receptors, Complement/antagonists & inhibitors
11.
J Pharmacol Exp Ther ; 360(1): 140-151, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27827303

ABSTRACT

Small molecule histone deacetylase (HDAC) inhibitors with anti-inflammatory activity may be candidates for targeting intestinal inflammatory pathways in inflammatory bowel disease (IBD). This study investigated whether treatment with a potent HDAC6 inhibitor, BML-281, could protect against colonic inflammation and prevent inflammatory cell infiltration into the colon to drive disease pathology in a mouse model of acute dextran sodium sulfate (DSS) colitis. Control and acute DSS-colitis mice were treated with BML-281 (1 mg/kg per day s.c. and 10 mg/kg per day s.c.) for 8 days. Changes in disease pathology, colonic structure, function, alterations in inflammatory milieu, together with colonic inflammatory cell flux, were assessed by weight loss and disease activity index in vivo and by flow cytometry, gene expression, and histology ex vivo. Anti-inflammatory responses of BML-281 on human polymorphonuclear leukocytes were assessed in vitro. Administration of BML-281 to DSS-treated mice attenuated colitis, weight loss, and disease pathology, including changes in colon structure and function, by eliciting broad-spectrum anti-inflammatory effects and preventing infiltration and activation of key immune cells in the lamina propria of the intestinal epithelium. Among different immune cells, BML-281 particularly suppressed the infiltration of CD19+ B-cells into the inflamed colonic lamina propria. This study supports the targeting of HDAC6 as an anti-inflammatory strategy for treating colon inflammation progressing to IBD. Some HDAC inhibitors are used in the clinic to treat cancer, and the results here for BML-281 highlight the potential for HDAC6 inhibitors to be used in a clinical setting for preventing and treating colonic inflammation and IBD in humans.


Subject(s)
B-Lymphocytes/drug effects , B-Lymphocytes/immunology , Colitis/drug therapy , Colitis/immunology , Dextran Sulfate/pharmacology , Histone Deacetylases/metabolism , Hydroxamic Acids/pharmacology , Isoxazoles/pharmacology , Animals , Colitis/chemically induced , Colitis/metabolism , Colon/drug effects , Colon/immunology , Colon/metabolism , Colon/pathology , Cytokines/metabolism , Diarrhea/complications , Female , Hemorrhage/complications , Histone Deacetylase 6 , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Hydroxamic Acids/therapeutic use , Intestinal Mucosa/drug effects , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Isoxazoles/therapeutic use , Lymphocytes/drug effects , Lymphocytes/immunology , Mice , Mice, Inbred C57BL , Mucins/metabolism , Myeloid Cells/drug effects , Myeloid Cells/immunology , Neutrophil Activation/drug effects , Peroxidase/metabolism
12.
ACS Med Chem Lett ; 7(12): 1179-1184, 2016 Dec 08.
Article in English | MEDLINE | ID: mdl-27994760

ABSTRACT

PAR2 antagonists have potential for treating inflammatory, respiratory, gastrointestinal, neurological, and metabolic disorders, but few antagonists are known. Derivatives of GB88 (3) suggest that all four of its components bind at distinct PAR2 sites with the isoxazole, cyclohexylalanine, and isoleucine determining affinity and selectivity, while the C-terminal substituent determines agonist/antagonist function. Here we report structurally similar PAR2 ligands with opposing functions (agonist vs antagonist) upon binding to PAR2. A biased ligand AY117 (65) was found to antagonize calcium release induced by PAR2 agonists trypsin and hexapeptide 2f-LIGRLO-NH2 (IC50 2.2 and 0.7 µM, HT29 cells), but it was a selective PAR2 agonist in inhibiting cAMP stimulation and activating ERK1/2 phosphorylation. It showed anti-inflammatory properties both in vitro and in vivo.

13.
Sci Rep ; 6: 24575, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27094554

ABSTRACT

Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3 nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1 -3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.


Subject(s)
Complement C5a/antagonists & inhibitors , Complement C5a/metabolism , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/pharmacokinetics , Receptor, Anaphylatoxin C5a/metabolism , Animals , Biological Availability , Chemotaxis/drug effects , Chemotaxis/immunology , Complement C5a/immunology , Disease Models, Animal , Edema/drug therapy , Edema/immunology , Edema/metabolism , Humans , Immunosuppressive Agents/chemistry , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Male , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Monocytes/cytology , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Rats , Receptor, Anaphylatoxin C5a/antagonists & inhibitors , Receptor, Anaphylatoxin C5a/chemistry
14.
Bioorg Med Chem Lett ; 26(3): 986-991, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26725028

ABSTRACT

Activation of protease activated receptor 2 (PAR2) has been implicated in inflammatory and metabolic disorders and its inhibition may yield novel therapeutics. Here, we report a series of PAR2 antagonists based on C-terminal capping of 5-isoxazolyl-L-cyclohexylalanine-L-isoleucine, with benzylamine analogues being effective new PAR2 antagonists. 5-Isoxazolyl-L-cyclohexylalanine-L-isoleucine-2-methoxybenzylamine (10) inhibited PAR2-, but not PAR1-, induced release of Ca(2+) (IC50 0.5 µM) in human colon cells, IL-6 and TNFα secretion (IC50 1-5 µM) from human kidney cells, and was anti-inflammatory in acute rat paw inflammation (ED50 5 mg/kg sc). These findings show that new benzylamide antagonists of PAR2 have anti-inflammatory activity.


Subject(s)
Anti-Inflammatory Agents/chemistry , Receptor, PAR-2/antagonists & inhibitors , Animals , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Calcium/metabolism , Cell Line , Edema/chemically induced , Edema/drug therapy , Edema/pathology , HT29 Cells , Humans , Interleukin-6/metabolism , Isoleucine/chemistry , Kidney Tubules/cytology , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Phenylalanine/analogs & derivatives , Phenylalanine/chemistry , Rats , Receptor, PAR-2/agonists , Receptor, PAR-2/metabolism , Structure-Activity Relationship , Tumor Necrosis Factor-alpha/metabolism
15.
J Pharmacol Exp Ther ; 356(2): 387-96, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26660228

ABSTRACT

Vorinostat and other inhibitors of different histone deacetylase (HDAC) enzymes are currently being sought to modulate a variety of human conditions, including chronic inflammatory diseases. Some HDAC inhibitors are anti-inflammatory in rodent models of arthritis and colitis, usually at cytotoxic doses that may cause side effects. Here, we investigate the dose-dependent pro- and anti-inflammatory efficacy of two known inhibitors of multiple HDACs, vorinostat and BML281, in human macrophages and in a rat model of collagen-induced arthritis by monitoring effects on disease progression, histopathology, and immunohistochemistry. Both HDAC inhibitors differentially modulated lipopolysaccharide (LPS)-induced cytokine release from human macrophages, suppressing release of some inflammatory mediators (IL12p40, IL6) at low concentrations (<3 µM) but amplifying production of others (TNF, IL1ß) at higher concentration (>3 µΜ). This trend translated in vivo to rat arthritis, with anti-inflammatory activity inversely correlating with dose. Both compounds were efficacious only at a low dose (1 mg⋅kg(-1)⋅day(-1) s.c.), whereas a higher dose (5 mg⋅kg(-1)⋅day(-1) s.c.) showed no positive effects on reducing pathology, even showing signs of exacerbating disease. These striking effects suggest a smaller therapeutic window than previously reported for HDAC inhibition in experimental arthritis. The findings support new investigations into repurposing HDAC inhibitors for anti-inflammatory therapeutic applications. However, HDAC inhibitors should be reinvestigated at lower, rather than higher, doses for enhanced efficacy in chronic diseases that require long-term treatment, with careful management of efficacy and long-term safety.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Arthritis, Experimental/metabolism , Histone Deacetylase Inhibitors/pharmacology , Inflammation Mediators/antagonists & inhibitors , Inflammation Mediators/metabolism , Macrophages/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Arthritis, Experimental/drug therapy , Cell Survival/drug effects , Cell Survival/physiology , Coculture Techniques , Dose-Response Relationship, Drug , Female , Histone Deacetylase Inhibitors/therapeutic use , Humans , Macrophages/drug effects , Rats , Rats, Wistar
16.
Chembiochem ; 16(16): 2289-93, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26336864

ABSTRACT

Cyclic peptides and macrocycles have the potential to be membrane permeable and orally bioavailable, despite often not complying with the "rule of five" used in medicinal chemistry to guide the discovery of oral drugs. Here we compare solvent-dependent three-dimensional structures of three cyclic hexapeptides containing d-amino acids, prolines, and intramolecular hydrogen bonds. Conformational rigidity rather than flexibility resulted in higher membrane permeability, metabolic stability and oral bioavailability, consistent with less polar surface exposure to solvent and a reduced entropy penalty for transition between polar and nonpolar environments.


Subject(s)
Peptides, Cyclic/metabolism , Administration, Oral , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Biological Availability , Circular Dichroism , Entropy , Half-Life , Hydrogen Bonding , Magnetic Resonance Spectroscopy , Male , Microsomes, Liver , Models, Molecular , Olive Oil/chemistry , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Permeability , Protein Structure, Tertiary , Rats , Rats, Wistar , Solvents/chemistry
17.
Vitam Horm ; 97: 1-55, 2015.
Article in English | MEDLINE | ID: mdl-25677767

ABSTRACT

Nociceptin (orphanin FQ) is a 17-residue neuropeptide hormone with roles in both nociception and analgesia. It is an opioid-like peptide that binds to and activates the G-protein-coupled receptor opioid receptor-like-1 (ORL-1, NOP, orphanin FQ receptor, kappa-type 3 opioid receptor) on central and peripheral nervous tissue, without activating classic delta-, kappa-, or mu-opioid receptors or being inhibited by the classic opioid antagonist naloxone. The three-dimensional structure of ORL-1 was recently published, and the activation mechanism is believed to involve capture by ORL-1 of the high-affinity binding, prohelical C-terminus. This likely anchors the receptor-activating N-terminus of nociception nearby for insertion in the membrane-spanning helices of ORL-1. In search of higher agonist potency, two lysine and two aspartate residues were strategically incorporated into the receptor-binding C-terminus of the nociceptin sequence and two Lys(i)→Asp(i+4) side chain-side chain condensations were used to generate lactam cross-links that constrained nociceptin into a highly stable α-helix in water. A cell-based assay was developed using natively expressed ORL-1 receptors on mouse neuroblastoma cells to measure phosphorylated ERK as a reporter of agonist-induced receptor activation and intracellular signaling. Agonist activity was increased up to 20-fold over native nociceptin using a combination of this helix-inducing strategy and other amino acid modifications. An NMR-derived three-dimensional solution structure is described for a potent ORL-1 agonist derived from nociceptin, along with structure-activity relationships leading to the most potent known α-helical ORL-1 agonist (EC50 40 pM, pERK, Neuro-2a cells) and antagonist (IC50 7 nM, pERK, Neuro-2a cells). These α-helix-constrained mimetics of nociceptin(1-17) had enhanced serum stability relative to unconstrained peptide analogues and nociceptin itself, were not cytotoxic, and displayed potent thermal analgesic and antianalgesic properties in rats (ED50 70 pmol, IC50 10 nmol, s.c.), suggesting promising uses in vivo for the treatment of pain and other ORL-1-mediated responses.


Subject(s)
Analgesics, Opioid/pharmacology , Narcotic Antagonists/pharmacology , Nerve Tissue Proteins/metabolism , Neurons/drug effects , Nociception/drug effects , Peptides/pharmacology , Receptors, Opioid/metabolism , Analgesics, Opioid/chemistry , Analgesics, Opioid/metabolism , Animals , Drug Design , Drugs, Investigational/chemistry , Drugs, Investigational/metabolism , Drugs, Investigational/pharmacology , Humans , Narcotic Antagonists/chemistry , Narcotic Antagonists/metabolism , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Neurons/metabolism , Oligopeptides/chemistry , Oligopeptides/genetics , Oligopeptides/metabolism , Oligopeptides/pharmacology , Opioid Peptides/chemistry , Opioid Peptides/genetics , Opioid Peptides/metabolism , Opioid Peptides/pharmacology , Peptides/chemistry , Peptides/genetics , Peptides/metabolism , Protein Conformation , Protein Engineering , Receptors, Opioid/agonists , Receptors, Opioid/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Nociceptin Receptor , Nociceptin
18.
Proc Natl Acad Sci U S A ; 111(49): 17504-9, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25416591

ABSTRACT

Enhancing the oral bioavailability of peptide drug leads is a major challenge in drug design. As such, methods to address this challenge are highly sought after by the pharmaceutical industry. Here, we propose a strategy to identify appropriate amides for N-methylation using temperature coefficients measured by NMR to identify exposed amides in cyclic peptides. N-methylation effectively caps these amides, modifying the overall solvation properties of the peptides and making them more membrane permeable. The approach for identifying sites for N-methylation is a rapid alternative to the elucidation of 3D structures of peptide drug leads, which has been a commonly used structure-guided approach in the past. Five leucine-rich peptide scaffolds are reported with selectively designed N-methylated derivatives. In vitro membrane permeability was assessed by parallel artificial membrane permeability assay and Caco-2 assay. The most promising N-methylated peptide was then tested in vivo. Here we report a novel peptide (15), which displayed an oral bioavailability of 33% in a rat model, thus validating the design approach. We show that this approach can also be used to explain the notable increase in oral bioavailability of a somatostatin analog.


Subject(s)
Amides/chemistry , Drug Design , Magnetic Resonance Spectroscopy , Peptides/pharmacokinetics , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Chromatography, Liquid , Humans , Hydrogen Bonding , Mass Spectrometry , Methylation , Peptides/chemical synthesis , Permeability , Protein Binding , Protein Conformation , Protein Interaction Mapping , Rats , Rats, Wistar , Solvents/chemistry , Technology, Pharmaceutical/methods , Temperature
19.
ACS Med Chem Lett ; 5(10): 1148-51, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25313329

ABSTRACT

Development of peptide-based drugs has been severely limited by lack of oral bioavailability with less than a handful of peptides being truly orally bioavailable, mainly cyclic peptides with N-methyl amino acids and few hydrogen bond donors. Here we report that cyclic penta- and hexa-leucine peptides, with no N-methylation and five or six amide NH protons, exhibit some degree of oral bioavailability (4-17%) approaching that of the heavily N-methylated drug cyclosporine (22%) under the same conditions. These simple cyclic peptides demonstrate that oral bioavailability is achievable for peptides that fall outside of rule-of-five guidelines without the need for N-methylation or modified amino acids.

20.
Angew Chem Int Ed Engl ; 53(45): 12059-63, 2014 Nov 03.
Article in English | MEDLINE | ID: mdl-25219505

ABSTRACT

The use of peptides in medicine is limited by low membrane permeability, metabolic instability, high clearance, and negligible oral bioavailability. The prediction of oral bioavailability of drugs relies on physicochemical properties that favor passive permeability and oxidative metabolic stability, but these may not be useful for peptides. Here we investigate effects of heterocyclic constraints, intramolecular hydrogen bonds, and side chains on the oral bioavailability of cyclic heptapeptides. NMR-derived structures, amide H-D exchange rates, and temperature-dependent chemical shifts showed that the combination of rigidification, stronger hydrogen bonds, and solvent shielding by branched side chains enhances the oral bioavailability of cyclic heptapeptides in rats without the need for N-methylation.


Subject(s)
Oligopeptides/pharmacokinetics , Peptides, Cyclic/pharmacokinetics , Administration, Oral , Amino Acid Sequence , Biological Availability , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/administration & dosage , Oligopeptides/chemistry , Peptides, Cyclic/administration & dosage , Peptides, Cyclic/chemistry , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...