Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 39(50): 18263-18275, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38061075

ABSTRACT

Plasmonic nanobubbles are composite objects resulting from the interaction between light and metallic nanoparticles immersed in a fluid. Plasmonic nanobubbles have applications in photothermal therapies, drug delivery, microfluidic manipulations, and solar energy conversion. Their early formation is, however, barely characterized due to the short time and length scales relevant to the process. Here, we investigate, using molecular dynamics (MD) simulations, the effect of nanoparticle wettability on both the local fluid thermodynamics and the kinetics of nanobubble generation in water. We first show that the local onset temperature of vapor nucleation decreases with the nanoparticle/water interfacial energy and may be 100 K below the water spinodal temperature in the case of weak nanoparticle/water interactions. Second, we demonstrate that vapor nucleation may be slower in the case of weak water/nanoparticle interactions. This result, which is qualitatively at odds with the predictions of isothermal classical nucleation theory, may be explained by the competition between two antagonist effects: while, classically, hydrophobicity increases the vapor nucleation rate, it also penalizes interfacial thermal transfer, slowing down kinetics. The kinetics of heat transfer from the nanoparticle to water is controlled by the interfacial thermal conductance. This quantity turns out not only to decrease with the nanoparticle hydrophobicity but also drops down prior to phase change, yielding even longer nucleation times. Such conclusions were reached by considering the comparison between MD and continuous heat transfer models. These results put forward the role of nanoparticle wettability in the generation of plasmonic nanobubbles observed experimentally and open the path to the control of boiling using nanopatterned surfaces.

2.
J Chem Phys ; 156(8): 084701, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232191

ABSTRACT

Coating gold nanostructures with a silica shell has been long considered for biomedical applications, including photoacoustic imaging. Recent experimental and modeling investigations reported contradicting results concerning the effect of coating on the photoacoustic response of gold nanostructures. Enhanced photoacoustic response is generally attributed to facilitated heat transfer at the gold/silica/water system. Here, we examine the photoacoustic response of gold core-silica shell nanoparticles immersed in water using a combination of the two temperature model and hydrodynamic phase field simulations. Here, of particular interest is the role of the interfacial coupling between the gold electrons and silica shell phonons. We demonstrate that as compared to uncoated nanoparticles, photoacoustic response is enhanced for very thin silica shells (5 nm) and short laser pulses, but for thicker coatings, the photoacoustic performance are generally deteriorated. We extend the study to the regime of nanocavitation and show that the generation of nanobubbles may also play a role in the enhanced acoustic response of core-shell nanoparticles. Our modeling effort may serve as guides for the optimization of the photoacoustic response of heterogeneous metal-dielectric nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL