Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732109

ABSTRACT

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Subject(s)
Cell Differentiation , Melatonin , Mesenchymal Stem Cells , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Humans , Cell Differentiation/drug effects , Cells, Cultured , Adipose Tissue/cytology , Neurons/cytology , Neurons/metabolism , Neurons/drug effects , Culture Media, Conditioned/pharmacology , Schwann Cells/cytology , Schwann Cells/metabolism , Schwann Cells/drug effects , Neurogenesis/drug effects , Adult , Nestin/metabolism , Nestin/genetics , Glial Fibrillary Acidic Protein/metabolism , Neuroglia/drug effects , Neuroglia/cytology , Neuroglia/metabolism , Synapsins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...