Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Adv Healthc Mater ; : e2401138, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978424

ABSTRACT

A distinct feature of pancreatic ductal adenocarcinoma (PDAC) is a prominent tumor microenvironment (TME) with remarkable cellular and spatial heterogeneity that meaningfully impacts disease biology and treatment resistance. The dynamic crosstalk between cancer cells and the dense stromal compartment leads to spatially and temporally heterogeneous metabolic alterations, such as acidic pH that contributes to drug resistance in PDAC. Thus, monitoring the extracellular pH metabolic fluctuations within the TME is crucial to predict and to quantify anticancer drug efficacy. Here, a simple and reliable alginate-based 3D PDAC model embedding ratiometric optical pH sensors and cocultures of tumor (AsPC-1) and stromal cells for simultaneously monitoring metabolic pH variations and quantify drug response is presented. By means of time-lapse confocal laser scanning microscopy (CLSM) coupled with a fully automated computational analysis, the extracellular pH metabolic variations are monitored and quantified over time during drug testing with gemcitabine, folfirinox, and paclitaxel, commonly used in PDAC therapy. In particular, the extracellular acidification is more pronounced after drugs treatment, resulting in increased antitumor effect correlated with apoptotic cell death. These findings highlight the importance of studying the influence of cellular metabolic mechanisms on tumor response to therapy in 3D tumor models, this being crucial for the development of personalized medicine approaches.

2.
J Exp Clin Cancer Res ; 43(1): 165, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877560

ABSTRACT

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is the most lethal cancer with an aggressive metastatic phenotype and very poor clinical prognosis. Interestingly, a lower occurrence of PDAC has been described in individuals with severe and long-standing asthma. Here we explored the potential link between PDAC and the glucocorticoid (GC) budesonide, a first-line therapy to treat asthma. METHODS: We tested the effect of budesonide and the classical GCs on the morphology, proliferation, migration and invasiveness of patient-derived PDAC cells and pancreatic cancer cell lines, using 2D and 3D cultures in vitro. Furthermore, a xenograft model was used to investigate the effect of budesonide on PDAC tumor growth in vivo. Finally, we combined genome-wide transcriptome analysis with genetic and pharmacological approaches to explore the mechanisms underlying budesonide activities in the different environmental conditions. RESULTS: We found that in 2D culture settings, high micromolar concentrations of budesonide reduced the mesenchymal invasive/migrating features of PDAC cells, without affecting proliferation or survival. This activity was specific and independent of the Glucocorticoid Receptor (GR). Conversely, in a more physiological 3D environment, low nanomolar concentrations of budesonide strongly reduced PDAC cell proliferation in a GR-dependent manner. Accordingly, we found that budesonide reduced PDAC tumor growth in vivo. Mechanistically, we demonstrated that the 3D environment drives the cells towards a general metabolic reprogramming involving protein, lipid, and energy metabolism (e.g., increased glycolysis dependency). This metabolic change sensitizes PDAC cells to the anti-proliferative effect of budesonide, which instead induces opposite changes (e.g., increased mitochondrial oxidative phosphorylation). Finally, we provide evidence that budesonide inhibits PDAC growth, at least in part, through the tumor suppressor CDKN1C/p57Kip2. CONCLUSIONS: Collectively, our study reveals that the microenvironment influences the susceptibility of PDAC cells to GCs and provides unprecedented evidence for the anti-proliferative activity of budesonide on PDAC cells in 3D conditions, in vitro and in vivo. Our findings may explain, at least in part, the reason for the lower occurrence of pancreatic cancer in asthmatic patients and suggest a potential suitability of budesonide for clinical trials as a therapeutic approach to fight pancreatic cancer.


Subject(s)
Budesonide , Cell Proliferation , Energy Metabolism , Pancreatic Neoplasms , Humans , Budesonide/pharmacology , Budesonide/therapeutic use , Mice , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Energy Metabolism/drug effects , Cell Proliferation/drug effects , Animals , Cell Line, Tumor , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Xenograft Model Antitumor Assays , Cell Movement/drug effects
3.
Front Oncol ; 13: 1248807, 2023.
Article in English | MEDLINE | ID: mdl-37492476
4.
Proc Natl Acad Sci U S A ; 120(11): e2122352120, 2023 03 14.
Article in English | MEDLINE | ID: mdl-36897966

ABSTRACT

A crucial challenge in medicine is choosing which drug (or combination) will be the most advantageous for a particular patient. Usually, drug response rates differ substantially, and the reasons for this response unpredictability remain ambiguous. Consequently, it is central to classify features that contribute to the observed drug response variability. Pancreatic cancer is one of the deadliest cancers with limited therapeutic achievements due to the massive presence of stroma that generates an environment that enables tumor growth, metastasis, and drug resistance. To understand the cancer-stroma cross talk within the tumor microenvironment and to develop personalized adjuvant therapies, there is a necessity for effective approaches that offer measurable data to monitor the effect of drugs at the single-cell level. Here, we develop a computational approach, based on cell imaging, that quantifies the cellular cross talk between pancreatic tumor cells (L3.6pl or AsPC1) and pancreatic stellate cells (PSCs), coordinating their kinetics in presence of the chemotherapeutic agent gemcitabine. We report significant heterogeneity in the organization of cellular interactions in response to the drug. For L3.6pl cells, gemcitabine sensibly decreases stroma-stroma interactions but increases stroma-cancer interactions, overall enhancing motility and crowding. In the AsPC1 case, gemcitabine promotes the interactions among tumor cells, but it does not affect stroma-cancer interplay, possibly suggesting a milder effect of the drug on cell dynamics.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Pancreatic Neoplasms/pathology , Gemcitabine , Cell Communication , Cell Line, Tumor , Tumor Microenvironment
5.
Cancers (Basel) ; 16(1)2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38201558

ABSTRACT

This Special Issue includes original articles and reviews on both established and innovative approaches to cancer targeting, showcased at the 29th IGB Workshop titled "Targeting the (un)usual suspects in cancer" "https://29thigbworkshop [...].

7.
J Exp Clin Cancer Res ; 41(1): 315, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36289544

ABSTRACT

BACKGROUND: Tumor-initiating cells (TIC), also known as cancer stem cells, are considered a specific subpopulation of cells necessary for cancer initiation and metastasis; however, the mechanisms by which they acquire metastatic traits are not well understood. METHODS: LAMC2 transcriptional levels were evaluated using publicly available transcriptome data sets, and LAMC2 immunohistochemistry was performed using a tissue microarray composed of PDAC and normal pancreas tissues. Silencing and tracing of LAMC2 was performed using lentiviral shRNA constructs and CRISPR/Cas9-mediated homologous recombination, respectively. The contribution of LAMC2 to PDAC tumorigenicity was explored in vitro by tumor cell invasion, migration, sphere-forming and organoids assays, and in vivo by tumor growth and metastatic assays. mRNA sequencing was performed to identify key cellular pathways upregulated in LAMC2 expressing cells. Metastatic spreading induced by LAMC2- expressing cells was blocked by pharmacological inhibition of transforming growth factor beta (TGF-ß) signaling. RESULTS: We report a LAMC2-expressing cell population, which is endowed with enhanced self-renewal capacity, and is sufficient for tumor initiation and differentiation, and drives metastasis. mRNA profiling of these cells indicates a prominent squamous signature, and differentially activated pathways critical for tumor growth and metastasis, including deregulation of the TGF-ß signaling pathway. Treatment with Vactosertib, a new small molecule inhibitor of the TGF-ß type I receptor (activin receptor-like kinase-5, ALK5), completely abrogated lung metastasis, primarily originating from LAMC2-expressing cells. CONCLUSIONS: We have identified a highly metastatic subpopulation of TICs marked by LAMC2. Strategies aimed at targeting the LAMC2 population may be effective in reducing tumor aggressiveness in PDAC patients. Our results prompt further study of this TIC population in pancreatic cancer and exploration as a potential therapeutic target and/or biomarker.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/pathology , Receptor, Transforming Growth Factor-beta Type I , RNA, Small Interfering , Pancreatic Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Transforming Growth Factor beta , RNA, Messenger , Activin Receptors , Cell Movement/genetics , Cell Line, Tumor , Laminin/genetics , Laminin/metabolism , Pancreatic Neoplasms
8.
Small ; 17(34): e2101711, 2021 08.
Article in English | MEDLINE | ID: mdl-34302422

ABSTRACT

The small molecule Galunisertib (LY2157299, LY) shows multiple anticancer activities blocking the transforming growth factor-ß1 receptor, responsible for the epithelial-to-mesenchymal transition (EMT) by which colorectal cancer (CRC) cells acquire migratory and metastatic capacities. However, frequent dosing of LY can produce highly toxic metabolites. Alternative strategies to reduce drug side effects can rely on nanoscale drug delivery systems that have led to a medical revolution in the treatment of cancer, improving drug efficacy and lowering drug toxicity. Here, a hybrid nanosystem (DNP-AuNPs-LY@Gel) made of a porous diatomite nanoparticle decorated with plasmonic gold nanoparticles, in which LY is retained by a gelatin shell, is proposed. The multifunctional capability of the nanosystem is demonstrated by investigating the efficient LY delivery, the enhanced EMT reversion in CRCs and the intracellular quantification of drug release with a sub-femtogram resolution by surface-enhanced Raman spectroscopy (SERS). The LY release trigger is the pH sensitivity of the gelatin shell to the CRC acidic microenvironment. The drug release is real-time monitored at single-cell level by analyzing the SERS signals of LY in CRC cells. The higher efficiency of LY delivered by the DNP-AuNPs-LY@Gel complex paves the way to an alternative strategy for lowering drug dosing and consequent side effects.


Subject(s)
Colorectal Neoplasms , Metal Nanoparticles , Colorectal Neoplasms/drug therapy , Diatomaceous Earth , Gold , Humans , Pyrazoles , Quinolines , Tumor Microenvironment
9.
Theranostics ; 11(12): 5686-5699, 2021.
Article in English | MEDLINE | ID: mdl-33897875

ABSTRACT

Background: Colorectal cancer (CRC) is currently the third leading cause for cancer-related mortality. Cancer stem cells have been implicated in colorectal tumor growth, but their specific role in tumor biology, including metastasis, is still uncertain. Methods: Increased expression of L1CAM, CXCR4 and NODAL was identified in tumor section of patients with CRC and in patients-derived-organoids (PDOs). The expression of L1CAM, CXCR4 and NODAL was evaluated using quantitative real-time PCR, western blotting, immunofluorescence, immunohistochemistry and flow cytometry. The effects of the L1CAM, CXCR4 and NODAL on tumor growth, proliferation, migration, invasion, colony-formation ability, metastasis and chemoresistance were investigated both in vitro and in vivo. Results: We found that human colorectal cancer tissue contains cancer stem cells defined by L1CAMhigh/CXCR4high expression that is activated by Nodal in hypoxic microenvironment. This L1CAMhigh/CXCR4high population is tumorigenic, highly resistant to standard chemotherapy, and determines the metastatic phenotype of the individual tumor. Depletion of the L1CAMhigh/CXCR4high population drastically reduces the tumorigenic potential and the metastatic phenotype of colorectal tumors. Conclusion: In conclusion, we demonstrated that a subpopulation of migrating L1CAMhigh/CXCR4high is essential for tumor progression. Together, these findings suggest that strategies aimed at modulating the Nodal signaling could have important clinical applications to inhibit colorectal cancer-derived metastasis.


Subject(s)
Cell Proliferation/physiology , Colorectal Neoplasms/metabolism , Neoplasm Metastasis/pathology , Neural Cell Adhesion Molecule L1/metabolism , Nodal Protein/metabolism , Organoids/metabolism , Receptors, CXCR4/metabolism , Animals , Cell Line, Tumor , Cell Movement/physiology , Colorectal Neoplasms/pathology , Humans , Mice , Organoids/pathology , Signal Transduction/physiology , Tumor Microenvironment/physiology
10.
Cancers (Basel) ; 13(4)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33672435

ABSTRACT

Pancreatic cancer, the fourth most common cancer worldwide, shows a highly unsuccessful therapeutic response. In the last 10 years, neither important advancements nor new therapeutic strategies have significantly impacted patient survival, highlighting the need to pursue new avenues for drug development discovery and design. Advanced cellular models, resembling as much as possible the original in vivo tumor environment, may be more successful in predicting the efficacy of future anti-cancer candidates in clinical trials. In this review, we discuss novel bioengineered platforms for anticancer drug discovery in pancreatic cancer, from traditional two-dimensional models to innovative three-dimensional ones.

11.
Sci Rep ; 10(1): 10192, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32576846

ABSTRACT

Tumour spheroids have the potential to be used as preclinical chemo-sensitivity assays. However, the production of three-dimensional (3D) tumour spheroids remains challenging as not all tumour cell lines form spheroids with regular morphologies and spheroid transfer often induces disaggregation. In the field of pancreatic cancer, the MiaPaCa-2 cell line is an interesting model for research but it is known for its difficulty to form stable spheroids; also, when formed, spheroids from this cell line are weak and arduous to manage and to harvest for further analyses such as multiple staining and imaging. In this work, we compared different methods (i.e. hanging drop, round-bottom wells and Matrigel embedding, each of them with or without methylcellulose in the media) to evaluate which one allowed to better overpass these limitations. Morphometric analysis indicated that hanging drop in presence of methylcellulose leaded to well-organized spheroids; interestingly, quantitative PCR (qPCR) analysis reflected the morphometric characterization, indicating that same spheroids expressed the highest values of CD44, VIMENTIN, TGF-ß1 and Ki-67. In addition, we investigated the generation of MiaPaCa-2 spheroids when cultured on substrates of different hydrophobicity, in order to minimize the area in contact with the culture media and to further improve spheroid formation.


Subject(s)
Cell Culture Techniques/methods , Pancreatic Neoplasms/pathology , Spheroids, Cellular/pathology , Cell Line, Tumor , Collagen/metabolism , Culture Media/metabolism , Drug Combinations , Humans , Hydrophobic and Hydrophilic Interactions , Laminin/metabolism , Methylcellulose/chemistry , Proteoglycans/metabolism
12.
Oncogene ; 39(21): 4271-4285, 2020 05.
Article in English | MEDLINE | ID: mdl-32291413

ABSTRACT

Pancreatic stellate cells (PSCs) secrete high levels of transforming growth factor-ß1 (TGF-ß1) that contributes to the development of pancreatic ductal adenocarcinoma (PDAC). TGF-ß1 modulates the expression of L1 cell adhesion molecule (L1CAM), but its role in tumour progression still remains controversial. To clarify L1 function in PDAC and cellular phenotypes, we performed L1CAM cell sorting, silencing and overexpression in several primary pancreatic cancer cells. PSCs silenced for TGF-ß1 were used for crosstalk experiments. We found that TGF-ß1 secreted by PSCs negatively regulates L1CAM expression, through canonical TGF-ß-Smad2/3 signalling, leading to a more aggressive PDAC phenotype. Cells with reduced expression of L1CAM harboured enhanced stemness potential and tumourigenicity. Inactivation of TGF-ß1 signalling in PSCs strongly reduced the aggressiveness of PDAC cells. Our data provide functional proof and mechanistic insights for the tumour-suppressive function of L1CAM via reducing stemness. Rescuing L1CAM expression in cancer cells through targeting of TGF-ß1 reverses stemness and bears the potential to improve the still miserable prognosis of PDAC patients.


Subject(s)
Carcinogenesis/metabolism , Down-Regulation , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Neural Cell Adhesion Molecule L1/biosynthesis , Pancreatic Neoplasms/metabolism , Pancreatic Stellate Cells/metabolism , Transforming Growth Factor beta1/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Line, Tumor , Humans , Neoplasm Proteins/genetics , Neoplastic Stem Cells/pathology , Neural Cell Adhesion Molecule L1/genetics , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/pathology , Transforming Growth Factor beta1/genetics
13.
Mol Oncol ; 11(1): 97-119, 2017 01.
Article in English | MEDLINE | ID: mdl-28085225

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancer types and represents a major therapeutic challenge. Although initial events in colorectal carcinogenesis are relatively well characterized and treatment for early-stage disease has significantly improved over the last decades, the mechanisms underlying metastasis - the main cause of death - remain poorly understood. Correspondingly, no effective therapy is currently available for advanced or metastatic disease. There is increasing evidence that colorectal cancer is hierarchically organized and sustained by cancer stem cells, in concert with various stromal cell types. Here, we review the interplay between cancer stem cells and their microenvironment in promoting metastasis and discuss recent insights relating to both patient prognosis and novel targeted treatment strategies. A better understanding of these topics may aid the prevention or reduction of metastatic burden.


Subject(s)
Colorectal Neoplasms/pathology , Neoplasm Metastasis/pathology , Neoplastic Stem Cells/pathology , Tumor Microenvironment , Animals , Carcinogenesis/immunology , Carcinogenesis/pathology , Colon/immunology , Colon/pathology , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/immunology , Colorectal Neoplasms/therapy , Humans , Immunotherapy/methods , Molecular Targeted Therapy/methods , Neoplasm Metastasis/immunology , Neoplastic Stem Cells/immunology , Prognosis , Rectum/immunology , Rectum/pathology
14.
Nucleic Acids Res ; 44(17): 8165-78, 2016 09 30.
Article in English | MEDLINE | ID: mdl-27257070

ABSTRACT

ZFP57 is necessary for maintaining repressive epigenetic modifications at Imprinting control regions (ICRs). In mouse embryonic stem cells (ESCs), ZFP57 binds ICRs (ICRBS) and many other loci (non-ICRBS). To address the role of ZFP57 on all its target sites, we performed high-throughput and multi-locus analyses of inbred and hybrid mouse ESC lines carrying different gene knockouts. By using an allele-specific RNA-seq approach, we demonstrate that ZFP57 loss results in derepression of the imprinted allele of multiple genes in the imprinted clusters. We also find marked epigenetic differences between ICRBS and non-ICRBS suggesting that different cis-acting regulatory functions are repressed by ZFP57 at these two classes of target loci. Overall, these data demonstrate that ZFP57 is pivotal to maintain the allele-specific epigenetic modifications of ICRs that in turn are necessary for maintaining the imprinted expression over long distances. At non-ICRBS, ZFP57 inactivation results in acquisition of epigenetic features that are characteristic of poised enhancers, suggesting that another function of ZFP57 in early embryogenesis is to repress cis-acting regulatory elements whose activity is not yet required.


Subject(s)
Gene Expression Regulation, Developmental , Genomic Imprinting , Mouse Embryonic Stem Cells/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Animals , Binding Sites/genetics , Cell Differentiation/genetics , CpG Islands/genetics , Epigenesis, Genetic , Genetic Loci , Histones/metabolism , Lysine/metabolism , Methylation , Mice , Models, Genetic
15.
J Vis Exp ; (100): e52801, 2015 Jun 20.
Article in English | MEDLINE | ID: mdl-26132091

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) contains a subset of exclusively tumorigenic cancer stem cells (CSCs) which have been shown to drive tumor initiation, metastasis and resistance to radio- and chemotherapy. Here we describe a specific methodology for culturing primary human pancreatic CSCs as tumor spheres in anchorage-independent conditions. Cells are grown in serum-free, non-adherent conditions in order to enrich for CSCs while their more differentiated progenies do not survive and proliferate during the initial phase following seeding of single cells. This assay can be used to estimate the percentage of CSCs present in a population of tumor cells. Both size (which can range from 35 to 250 micrometers) and number of tumor spheres formed represents CSC activity harbored in either bulk populations of cultured cancer cells or freshly harvested and digested tumors. Using this assay, we recently found that metformin selectively ablates pancreatic CSCs; a finding that was subsequently further corroborated by demonstrating diminished expression of pluripotency-associated genes/surface markers and reduced in vivo tumorigenicity of metformin-treated cells. As the final step for preclinical development we treated mice bearing established tumors with metformin and found significantly prolonged survival. Clinical studies testing the use of metformin in patients with PDAC are currently underway (e.g., NCT01210911, NCT01167738, and NCT01488552). Mechanistically, we found that metformin induces a fatal energy crisis in CSCs by enhancing reactive oxygen species (ROS) production and reducing mitochondrial transmembrane potential. In contrast, non-CSCs were not eliminated by metformin treatment, but rather underwent reversible cell cycle arrest. Therefore, our study serves as a successful example for the potential of in vitro sphere formation as a screening tool to identify compounds that potentially target CSCs, but this technique will require further in vitro and in vivo validation to eliminate false discoveries.


Subject(s)
Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/pathology , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/pathology , Animals , Cell Culture Techniques , Female , Humans , Metformin/pharmacology , Metformin/therapeutic use , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Xenograft Model Antitumor Assays
16.
Gut ; 64(12): 1936-48, 2015 Dec.
Article in English | MEDLINE | ID: mdl-25887381

ABSTRACT

OBJECTIVE: Cancer stem cells (CSCs) represent the root of many solid cancers including pancreatic ductal adenocarcinoma, are highly chemoresistant and represent the cellular source for disease relapse. However the mechanisms involved in these processes still need to be fully elucidated. Understanding the mechanisms implicated in chemoresistance and metastasis of pancreatic cancer is critical to improving patient outcomes. DESIGN: Micro-RNA (miRNA) expression analyses were performed to identify functionally defining epigenetic signatures in pancreatic CSC-enriched sphere-derived cells and gemcitabine-resistant pancreatic CSCs. RESULTS: We found the miR-17-92 cluster to be downregulated in chemoresistant CSCs versus non-CSCs and demonstrate its crucial relevance for CSC biology. In particular, overexpression of miR-17-92 reduced CSC self-renewal capacity, in vivo tumourigenicity and chemoresistance by targeting multiple NODAL/ACTIVIN/TGF-ß1 signalling cascade members as well as directly inhibiting the downstream targets p21, p57 and TBX3. Overexpression of miR-17-92 translated into increased CSC proliferation and their eventual exhaustion via downregulation of p21 and p57. Finally, the translational impact of our findings could be confirmed in preclinical models for pancreatic cancer. CONCLUSIONS: Our findings therefore identify the miR-17-92 cluster as a functionally determining family of miRNAs in CSCs, and highlight the putative potential of developing modulators of this cluster to overcome drug resistance in pancreatic CSCs.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Carcinoma, Pancreatic Ductal/metabolism , Deoxycytidine/analogs & derivatives , Drug Resistance, Neoplasm/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/metabolism , Activins/metabolism , Animals , Antimetabolites, Antineoplastic/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Cell Cycle Checkpoints/drug effects , Cell Self Renewal , Cell Transformation, Neoplastic , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Deoxycytidine/pharmacology , Deoxycytidine/therapeutic use , Down-Regulation , Epigenesis, Genetic , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Mice , Mice, Nude , MicroRNAs/antagonists & inhibitors , MicroRNAs/genetics , Neoplastic Stem Cells/drug effects , Nodal Protein/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , RNA, Long Noncoding , Signal Transduction , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Transcriptome , Transforming Growth Factor beta1/metabolism , Gemcitabine
17.
Nat Genet ; 47(4): 320-9, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25706628

ABSTRACT

Recent molecular classifications of colorectal cancer (CRC) based on global gene expression profiles have defined subtypes displaying resistance to therapy and poor prognosis. Upon evaluation of these classification systems, we discovered that their predictive power arises from genes expressed by stromal cells rather than epithelial tumor cells. Bioinformatic and immunohistochemical analyses identify stromal markers that associate robustly with disease relapse across the various classifications. Functional studies indicate that cancer-associated fibroblasts (CAFs) increase the frequency of tumor-initiating cells, an effect that is dramatically enhanced by transforming growth factor (TGF)-ß signaling. Likewise, we find that all poor-prognosis CRC subtypes share a gene program induced by TGF-ß in tumor stromal cells. Using patient-derived tumor organoids and xenografts, we show that the use of TGF-ß signaling inhibitors to block the cross-talk between cancer cells and the microenvironment halts disease progression.


Subject(s)
Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Fibroblasts/metabolism , Neoplastic Stem Cells/metabolism , Animals , Cluster Analysis , Colorectal Neoplasms/classification , Colorectal Neoplasms/pathology , Fibroblasts/pathology , Gene Expression Regulation, Neoplastic , HT29 Cells , Humans , Mice , Mice, Nude , Microarray Analysis , Neoplasm Invasiveness , Neoplasm Metastasis , Neoplastic Stem Cells/pathology , Prognosis , Stromal Cells/metabolism , Stromal Cells/pathology , Transcriptome
18.
Nat Methods ; 11(11): 1161-9, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25262208

ABSTRACT

Cancer stem cells (CSCs) are thought to drive tumor growth, metastasis and chemoresistance. Although surface markers such as CD133 and CD44 have been successfully used to isolate CSCs, their expression is not exclusively linked to the CSC phenotype and is prone to environmental alteration. We identified cells with an autofluorescent subcellular compartment that exclusively showed CSC features across different human tumor types. Primary tumor-derived autofluorescent cells did not overlap with side-population (SP) cells, were enriched in sphere culture and during chemotherapy, strongly expressed pluripotency-associated genes, were highly metastatic and showed long-term in vivo tumorigenicity, even at the single-cell level. Autofluorescence was due to riboflavin accumulation in membrane-bounded cytoplasmic structures bearing ATP-dependent ABCG2 transporters. In summary, we identified and characterized an intrinsic autofluorescent phenotype in CSCs of diverse epithelial cancers and used this marker to isolate and characterize these cells.


Subject(s)
Biomarkers, Tumor/metabolism , Cell Separation/methods , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Optical Imaging/methods , Riboflavin/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2 , ATP-Binding Cassette Transporters/metabolism , Animals , Autophagy , Autophagy-Related Protein 12 , Carcinoma, Hepatocellular/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Pancreatic Ductal/pathology , Colorectal Neoplasms/pathology , Female , Humans , Liver Neoplasms/pathology , Lung Neoplasms/pathology , Mice , Mice, Nude , Microtubule-Associated Proteins/biosynthesis , Neoplasm Proteins/metabolism , Pancreatic Neoplasms/pathology , Small Ubiquitin-Related Modifier Proteins/biosynthesis , Tumor Cells, Cultured
19.
PLoS One ; 8(10): e76518, 2013.
Article in English | MEDLINE | ID: mdl-24204632

ABSTRACT

Pancreatic ductal adenocarcinomas contain a subset of exclusively tumorigenic cancer stem cells (CSCs), which are capable of repopulating the entire heterogeneous cancer cell populations and are highly resistant to standard chemotherapy. Here we demonstrate that metformin selectively ablated pancreatic CSCs as evidenced by diminished expression of pluripotency-associated genes and CSC-associated surface markers. Subsequently, the ability of metformin-treated CSCs to clonally expand in vitro was irreversibly abrogated by inducing apoptosis. In contrast, non-CSCs preferentially responded by cell cycle arrest, but were not eliminated by metformin treatment. Mechanistically, metformin increased reactive oxygen species production in CSC and reduced their mitochondrial transmembrane potential. The subsequent induction of lethal energy crisis in CSCs was independent of AMPK/mTOR. Finally, in primary cancer tissue xenograft models metformin effectively reduced tumor burden and prevented disease progression; if combined with a stroma-targeting smoothened inhibitor for enhanced tissue penetration, while gemcitabine actually appeared dispensable.


Subject(s)
Metformin/pharmacology , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Pancreatic Neoplasms/metabolism , Biomarkers/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Disease Progression , Gene Expression Regulation, Neoplastic/drug effects , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Stromal Cells/drug effects , Stromal Cells/metabolism
20.
Proc Natl Acad Sci U S A ; 109(47): E3231-40, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23129614

ABSTRACT

Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage. Conditional inactivation of cripto in adult satellite cells compromises skeletal muscle regeneration, whereas gain of function of Cripto accelerates regeneration, leading to muscle hypertrophy. Moreover, we provide evidence that Cripto modulates myogenic cell determination and promotes proliferation by antagonizing the TGF-ß ligand myostatin. Our data provide unique insights into the molecular and cellular basis of Cripto activity in skeletal muscle regeneration and raise previously undescribed implications for stem cell biology and regenerative medicine.


Subject(s)
Cell Lineage , Epidermal Growth Factor/metabolism , Membrane Glycoproteins/metabolism , Muscle, Skeletal/physiology , Myostatin/antagonists & inhibitors , Neoplasm Proteins/metabolism , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Satellite Cells, Skeletal Muscle/pathology , Aging/metabolism , Animals , Cell Proliferation , Gene Deletion , Gene Targeting , Hypertrophy , Mice , Mice, Inbred C57BL , Models, Animal , Muscle Development , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Myoblasts/metabolism , Myoblasts/pathology , Myostatin/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...