Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Neural Regen Res ; 20(3): 779-793, 2025 Mar 01.
Article in English | MEDLINE | ID: mdl-38886942

ABSTRACT

Mononuclear macrophage infiltration in the central nervous system is a prominent feature of neuroinflammation. Recent studies on the pathogenesis and progression of multiple sclerosis have highlighted the multiple roles of mononuclear macrophages in the neuroinflammatory process. Monocytes play a significant role in neuroinflammation, and managing neuroinflammation by manipulating peripheral monocytes stands out as an effective strategy for the treatment of multiple sclerosis, leading to improved patient outcomes. This review outlines the steps involved in the entry of myeloid monocytes into the central nervous system that are targets for effective intervention: the activation of bone marrow hematopoiesis, migration of monocytes in the blood, and penetration of the blood-brain barrier by monocytes. Finally, we summarize the different monocyte subpopulations and their effects on the central nervous system based on phenotypic differences. As activated microglia resemble monocyte-derived macrophages, it is important to accurately identify the role of monocyte-derived macrophages in disease. Depending on the roles played by monocyte-derived macrophages at different stages of the disease, several of these processes can be interrupted to limit neuroinflammation and improve patient prognosis. Here, we discuss possible strategies to target monocytes in neurological diseases, focusing on three key aspects of monocyte infiltration into the central nervous system, to provide new ideas for the treatment of neurodegenerative diseases.

2.
CNS Neurosci Ther ; 30(4): e14721, 2024 04.
Article in English | MEDLINE | ID: mdl-38644578

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder distinguished by a swift cognitive deterioration accompanied by distinctive pathological hallmarks such as extracellular Aß (ß-amyloid) peptides, neuronal neurofibrillary tangles (NFTs), sustained neuroinflammation, and synaptic degeneration. The elevated frequency of AD cases and its proclivity to manifest at a younger age present a pressing challenge in the quest for novel therapeutic interventions. Numerous investigations have substantiated the involvement of C/EBPß in the progression of AD pathology, thus indicating its potential as a therapeutic target for AD treatment. AIMS: Several studies have demonstrated an elevation in the expression level of C/EBPß among individuals afflicted with AD. Consequently, this review predominantly delves into the association between C/EBPß expression and the pathological progression of Alzheimer's disease, elucidating its underlying molecular mechanism, and pointing out the possibility that C/EBPß can be a new therapeutic target for AD. METHODS: A systematic literature search was performed across multiple databases, including PubMed, Google Scholar, and so on, utilizing predetermined keywords and MeSH terms, without temporal constraints. The inclusion criteria encompassed diverse study designs, such as experimental, case-control, and cohort studies, restricted to publications in the English language, while conference abstracts and unpublished sources were excluded. RESULTS: Overexpression of C/EBPß exacerbates the pathological features of AD, primarily by promoting neuroinflammation and mediating the transcriptional regulation of key molecular pathways, including δ-secretase, apolipoprotein E4 (APOE4), acidic leucine-rich nuclear phosphoprotein-32A (ANP32A), transient receptor potential channel 1 (TRPC1), and Forkhead BoxO (FOXO). DISCUSSION: The correlation between overexpression of C/EBPß and the pathological development of AD, along with its molecular mechanisms, is evident. Investigating the pathways through which C/EBPß regulates the development of AD reveals numerous multiple vicious cycle pathways exacerbating the pathological progression of the disease. Furthermore, the exacerbation of pathological progression due to C/EBPß overexpression and its molecular mechanism is not limited to AD but also extends to other neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and multiple sclerosis (MS). CONCLUSION: The overexpression of C/EBPß accelerates the irreversible progression of AD pathophysiology. Additionally, C/EBPß plays a crucial role in mediating multiple pathways linked to AD pathology, some of which engender vicious cycles, leading to the establishment of feedback mechanisms. To sum up, targeting C/EBPß could hold promise as a therapeutic strategy not only for AD but also for other degenerative diseases.


Subject(s)
Alzheimer Disease , CCAAT-Enhancer-Binding Protein-beta , Disease Progression , Humans , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , CCAAT-Enhancer-Binding Protein-beta/metabolism , CCAAT-Enhancer-Binding Protein-beta/genetics , Animals , Amyloid beta-Peptides/metabolism
3.
Front Endocrinol (Lausanne) ; 14: 1332712, 2023.
Article in English | MEDLINE | ID: mdl-38274231

ABSTRACT

Background: Delirium significantly contributes to both mortality and morbidity among hospitalized older adults. Furthermore, delirium leads to escalated healthcare expenditures, extended hospital stays, and enduring cognitive deterioration, all of which are acknowledged detrimental outcomes. Nonetheless, the current strategies for predicting and managing delirium remain constrained. Our aim was to employ Mendelian randomization (MR) to investigate the potential causal relationship between metabolites and delirium, as well as to identify potential therapeutic targets. Methods: We identified 129 distinct blood metabolites from three genome-wide association studies (GWASs) conducted on the metabolome, involving a total of 147,827 participants of European descent. Genetic information pertaining to delirium was sourced from the ninth iteration of the Finngen Biobank, encompassing 359,699 individuals of Finnish ancestry. We conducted MR analyses to evaluate the connections between blood metabolites and delirium. Additionally, we extended our analysis to encompass the entire phenome using MR, aiming to uncover potential on-target consequences resulting from metabolite interventions. Results: In our investigation, we discovered three metabolites serving as causal mediators in the context of delirium: clinical low density lipoprotein cholesterol (LDL-C) (odds ratio [OR]: 1.47, 95% confidence interval [CI]: 1.25-1.73, p = 3.92 x 10-6), sphingomyelin (OR: 1.47, 95% CI: 1.25-1.74, p = 5.97 x 10-6), and X-11593-O-methylascorbate (OR: 0.21, 95% CI: 0.10-0.43, p = 1.86 x 10-5). Furthermore, utilizing phenome-wide MR analysis, we discerned that clinical LDL-C, sphingomyelin, and O-methylascorbate not only mediate delirium susceptibility but also impact the risk of diverse ailments. Limitations: (1) Limited representation of the complete blood metabolome, (2) reliance on the PheCode system based on hospital diagnoses may underrepresent conditions with infrequent hospital admissions, and (3) limited to European ancestry. Conclusion: The genetic prediction of heightened O-methylascorbate levels seems to correspond to a diminished risk of delirium, in contrast to the association of elevated clinical LDL-C and sphingomyelin levels with an amplified risk. A comprehensive analysis of side-effect profiles has been undertaken to facilitate the prioritization of drug targets. Notably, O-methylascorbate emerges as a potentially auspicious target for mitigating and treating delirium, offering the advantage of lacking predicted adverse side effects.


Subject(s)
Delirium , Mendelian Randomization Analysis , Humans , Aged , Cholesterol, LDL , Risk Factors , Mendelian Randomization Analysis/methods , Genome-Wide Association Study/methods , Sphingomyelins , Delirium/genetics
SELECTION OF CITATIONS
SEARCH DETAIL