Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Genet Evol ; 123: 105625, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38906517

ABSTRACT

The genus Pseudochrobactrum encompasses free-living bacteria phylogenetically close to Ochrobactrum opportunistic pathogens and to Brucella, facultative intracellular parasites causing brucellosis, a worldwide-extended and grave zoonosis. Recently, Pseudochrobactrum strains were isolated from Brucella natural hosts on Brucella selective media, potentially causing diagnostic confusions. Strikingly, P. algeriensis was isolated from cattle lymph nodes, organs that are inimical to bacteria. Here, we analyse P. algeriensis potential virulence factors in comparison with Ochrobactrum and Brucella. Consistent with genomic analyses, Western-Blot analyses confirmed that P. algeriensis lacks the ability to synthesize the N-formylperosamine O-polysaccharide characteristic of the lipopolysaccharide (LPS) of smooth Brucella core species. However, unlike other Pseudochrobactrum but similar to some early diverging brucellae, P. algeriensis carries genes potentially synthetizing a rhamnose-based O-polysaccharide LPS. Lipid A analysis by MALDI-TOF demonstrated that P. algeriensis LPS bears a lipid A with a reduced pathogen-associated molecular pattern, a trait shared with Ochrobactrum and Brucella that is essential to generate a highly stable outer membrane and to delay immune activation. Also, although not able to multiply intracellularly in macrophages, the analysis of P. algeriensis cell lipid envelope revealed the presence of large amounts of cationic aminolipids, which may account for the extremely high resistance of P. algeriensis to bactericidal peptides and could favor colonization of mucosae and transient survival in Brucella hosts. However, two traits critical in Brucella pathogenicity are either significantly different (T4SS [VirB]) or absent (erythritol catabolic pathway) in P. algeriensis. This work shows that, while diverging in other characteristics, lipidic envelope features relevant in Brucella pathogenicity are conserved in Brucellaceae. The constant presence of these features strongly suggests that reinforcement of the envelope integrity as an adaptive advantage in soil was maintained in Brucella because of the similarity of some environmental challenges, such as the action of cationic peptide antibiotics and host defense peptides. This information adds knowledge about the evolution of Brucellaceae, and also underlines the taxonomical differences of the three genera compared.

2.
J Clin Microbiol ; 61(8): e0043823, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37395662

ABSTRACT

Bacteria of the genus Brucella are facultative intracellular parasites that cause brucellosis, a severe animal and human disease. Recently, a group of taxonomists merged the brucellae with the primarily free-living, phylogenetically related Ochrobactrum spp. in the genus Brucella. This change, founded only on global genomic analysis and the fortuitous isolation of some opportunistic Ochrobactrum spp. from medically compromised patients, has been automatically included in culture collections and databases. We argue that clinical and environmental microbiologists should not accept this nomenclature, and we advise against its use because (i) it was presented without in-depth phylogenetic analyses and did not consider alternative taxonomic solutions; (ii) it was launched without the input of experts in brucellosis or Ochrobactrum; (iii) it applies a non-consensus genus concept that disregards taxonomically relevant differences in structure, physiology, population structure, core-pangenome assemblies, genome structure, genomic traits, clinical features, treatment, prevention, diagnosis, genus description rules, and, above all, pathogenicity; and (iv) placing these two bacterial groups in the same genus creates risks for veterinarians, medical doctors, clinical laboratories, health authorities, and legislators who deal with brucellosis, a disease that is particularly relevant in low- and middle-income countries. Based on all this information, we urge microbiologists, bacterial collections, genomic databases, journals, and public health boards to keep the Brucella and Ochrobactrum genera separate to avoid further bewilderment and harm.


Subject(s)
Brucella , Ochrobactrum , Ochrobactrum/classification , Ochrobactrum/genetics , Ochrobactrum/pathogenicity , Ochrobactrum/physiology , Brucella/classification , Brucella/genetics , Brucella/pathogenicity , Brucella/physiology , Terminology as Topic , Phylogeny , Brucellosis/drug therapy , Brucellosis/microbiology , Humans , Opportunistic Infections/microbiology
3.
Microb Pathog ; 174: 105930, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36496059

ABSTRACT

Brucellosis is a zoonotic disease caused by Gram-negative bacteria of the genus Brucella. These pathogens cause long-lasting infections, a process in which Brucella modifications in the lipopolysaccharide (LPS) and envelope lipids reduce pathogen-associated molecular pattern (PAMP) recognition, thus hampering innate immunity activation. In vivo models are essential to investigate bacterial virulence, mice being the most used model. However, ethical and practical considerations impede their use in high-throughput screening studies. Although lacking the complexity of the mammalian immune system, insects share key-aspects of innate immunity with mammals, and Galleria mellonella has been used increasingly as a model. G. mellonella larvae have been shown useful in virulence analyses, including Gram-negative pathogens like Klebsiella pneumoniae and Legionella pneumophila. To assess its potential to study Brucella virulence, we first evaluated larva survival upon infection with representative Brucella species (i.e.B. abortus 2308W, B. microti CCM4915 and B. suis biovar 2) and mutants in the VirB type-IV secretion system (T4SS) or in the LPS-O-polysaccharide (O-PS). As compared to K.pneumoniae, the Brucella spp. tested induced a delayed and less severe mortality profile consistent with an escape of innate immunity detection. Brucella replication within larvae was affected by the lack of O-PS, which is reminiscent of their attenuation in natural hosts. On the contrary, replication was not affected by T4SS dysfunction and the mutant induced only slightly less mortality (not statistically significant) than its parental strain. We also evaluated G. mellonella to efficiently recognise Brucella and their LPS by quantification of the pro-phenoloxidase system and melanisation activation, using Pseudomonas LPS as a positive control. Among the brucellae, only B. microti LPS triggered an early-melanisation response consistent with the slightly increased endotoxicity of this species in mice. Therefore, G. mellonella represents a tool to screen for potential Brucella factors modulating innate immunity, but its usefulness to investigate other mechanisms relevant in Brucella intracellular life is limited.


Subject(s)
Brucella , Moths , Animals , Mice , Moths/microbiology , Lipopolysaccharides , Larva/microbiology , Host-Pathogen Interactions , Mammals
4.
Article in English | MEDLINE | ID: mdl-35133261

ABSTRACT

Three Gram-negative, rod-shaped, oxidase-positive, non-spore-forming, non-motile strains (C130915_07T, C150915_16 and C150915_17) were isolated from lymph nodes of Algerian cows. On the basis of 16S rRNA gene and whole genome similarities, the isolates were almost identical and clearly grouped in the genus Pseudochrobactrum. This allocation was confirmed by the analysis of fatty acids (C19:cyclo, C18 : 1, C18 : 0, C16 : 1 and C16 : 0) and of polar lipids (major components: phosphatidylethanolamine, ornithine-lipids, phosphatidylglycerol, cardiolipin and phosphatidylcholine, plus moderate amounts of phosphatidylmonomethylethanolamine, phosphatidyldimethylethanolamine and other aminolipids). Genomic, physiological and biochemical data differentiated these isolates from previously described Pseudochrobactrum species in DNA relatedness, carbon assimilation pattern and growth temperature range. Thus, these organisms represent a novel species of the genus Pseudochrobactrum, for which the name Pseudochrobactrum algeriensis sp. nov. is proposed (type strain C130915_07T=CECT30232T=LMG 32378T).


Subject(s)
Brucellaceae/classification , Cattle/microbiology , Lymph Nodes , Phylogeny , Animals , Bacterial Typing Techniques , Base Composition , Brucellaceae/isolation & purification , DNA, Bacterial/genetics , Fatty Acids/chemistry , Female , Lymph Nodes/microbiology , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...