Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Trauma Acute Care Surg ; 96(2): 256-264, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37858305

ABSTRACT

BACKGROUND: Hemorrhage control in prolonged field care (PFC) presents unique challenges that drive the need for enhanced point of injury treatment capabilities to maintain patient stability beyond the Golden Hour. To address this, two hemostatic agents, Combat Gauze (CG) and XSTAT, were evaluated in a porcine model of uncontrolled junctional hemorrhage for speed of deployment and hemostatic efficacy over 72 hours. METHODS: The left subclavian artery and subscapular vein were isolated in anesthetized male Yorkshire swine (70-85 kg) and injured via 50% transection, followed by 30 seconds of hemorrhage. Combat Gauze (n = 6) or XSTAT (n = 6) was administered until bleeding stopped and remained within subjects for observation over 72 hours. Physiologic monitoring, hemostatic efficacy, and hematological parameters were measured throughout the protocol. Gross necropsy and histology were performed following humane euthanasia. RESULTS: Both CG and XSTAT maintained hemostasis throughout the full duration of the protocol. There were no significant differences between groups in hemorrhage volume (CG: 1021.0 ± 183.7 mL vs. XSTAT: 968.2 ± 243.3 mL), total blood loss (CG: 20.8 ± 2.7% vs. XSTAT: 20.1 ± 5.1%), or devices used (CG: 3.8 ± 1.2 vs. XSTAT: 5.3 ± 1.4). XSTAT absorbed significantly more blood than CG (CG: 199.5 ± 50.3 mL vs. XSTAT: 327.6 ± 71.4 mL) and was significantly faster to administer (CG: 3.4 ± 1.6 minutes vs. XSTAT: 1.4 ± 0.5 minutes). There were no significant changes in activated clot time, prothrombin time, or international normalized ratio between groups or compared with baseline throughout the 72-hour protocol. Histopathology revealed no evidence of microthromboemboli or disseminated coagulopathies across evaluated tissues in either group. CONCLUSION: Combat Gauze and XSTAT demonstrated equivalent hemostatic ability through 72 hours, with no overt evidence of coagulopathies from prolonged indwelling. In addition, XSTAT offered significantly faster administration and the ability to absorb more blood. Taken together, XSTAT offers logistical and efficiency advantages over CG for immediate control of junctional noncompressible hemorrhage, particularly in a tactical environment. In addition, extension of indicated timelines to 72 hours allows translation to PFC.


Subject(s)
Hemostatics , Swine , Male , Humans , Animals , Hemostatics/therapeutic use , Disease Models, Animal , Hemorrhage/therapy , Exsanguination/therapy , Hemostasis , Hemostatic Techniques
2.
mBio ; 11(1)2020 01 28.
Article in English | MEDLINE | ID: mdl-31992620

ABSTRACT

Mucormycosis is an emerging lethal fungal infection in immunocompromised patients. Mucor circinelloides is a causal agent of mucormycosis and serves as a model system to understand genetics in Mucorales. Calcineurin is a conserved virulence factor in many pathogenic fungi, and calcineurin inhibition or deletion of the calcineurin regulatory subunit (CnbR) in Mucor results in a shift from hyphal to yeast growth. We analyzed 36 calcineurin inhibitor-resistant or bypass mutants that exhibited hyphal growth in the presence of calcineurin inhibitors or in the yeast-locked cnbRΔ mutant background without carrying any mutations in known calcineurin components. We found that a majority of the mutants had altered sequence in a gene, named here bycA (bypass of calcineurin). bycA encodes an amino acid permease. We verified that both the bycAΔ single mutant and the bycAΔ cnbRΔ double mutant are resistant to calcineurin inhibitor FK506, thereby demonstrating a novel mechanism of resistance against calcineurin inhibitors. We also found that the level of expression of bycA was significantly higher in the wild-type strain treated with FK506 and in the cnbRΔ mutants but was significantly lower in the wild-type strain without FK506 treatment. These findings suggest that bycA is a negative regulator of hyphal growth and/or a positive regulator of yeast growth in Mucor and that calcineurin suppresses expression of the bycA gene at the mRNA level to promote hyphal growth. BycA is involved in the Mucor hypha-yeast transition as our data demonstrate positive correlations among bycA expression, protein kinase A activity, and Mucor yeast growth. Also, calcineurin, independently of its role in morphogenesis, contributes to virulence traits, including phagosome maturation blockade, host cell damages, and proangiogenic growth factor induction during interactions with hosts.IMPORTANCEMucor is intrinsically resistant to most known antifungals, which makes mucormycosis treatment challenging. Calcineurin is a serine/threonine phosphatase that is widely conserved across eukaryotes. When calcineurin function is inhibited in Mucor, growth shifts to a less virulent yeast growth form, which makes calcineurin an attractive target for development of new antifungal drugs. Previously, we identified two distinct mechanisms through which Mucor can become resistant to calcineurin inhibitors involving Mendelian mutations in the gene for FKBP12, including mechanisms corresponding to calcineurin A or B subunits and epimutations silencing the FKBP12 gene. Here, we identified a third novel mechanism where loss-of-function mutations in the amino acid permease corresponding to the bycA gene contribute to resistance against calcineurin inhibitors. When calcineurin activity is absent, BycA can activate protein kinase A (PKA) to promote yeast growth via a cAMP-independent pathway. Our data also show that calcineurin activity contributes to host-pathogen interactions primarily in the pathogenesis of Mucor.


Subject(s)
Antifungal Agents/pharmacology , Calcineurin Inhibitors/pharmacology , Drug Resistance, Fungal , Mucor/drug effects , Mucormycosis/microbiology , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Host-Pathogen Interactions , Humans , Microbial Sensitivity Tests , Models, Biological , Mucor/genetics , Mutation , RNA, Messenger/genetics , Virulence/genetics , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...