Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37373015

ABSTRACT

Circulating endothelial progenitor cells (EPCs) play a pivotal role in the repair of diseases in which angiogenesis is required. Although they are a potentially valuable cell therapy tool, their clinical use remains limited due to suboptimal storage conditions and, especially, long-term immune rejection. EPC-derived extracellular vesicles (EPC-EVs) may be an alternative to EPCs given their key role in cell-cell communication and expression of the same parental markers. Here, we investigated the regenerative effects of umbilical cord blood (CB) EPC-EVs on CB-EPCs in vitro. After amplification, EPCs were cultured in a medium containing an EVs-depleted serum (EV-free medium). Then, EVs were isolated from the conditioned medium with tangential flow filtration (TFF). The regenerative effects of EVs on cells were investigated by analyzing cell migration, wound healing, and tube formation. We also analyzed their effects on endothelial cell inflammation and Nitric Oxide (NO) production. We showed that adding different doses of EPC-EVs on EPCs does not alter the basal expression of the endothelial cell markers nor change their proliferative potential and NO production level. Furthermore, we demonstrated that EPC-EVs, when used at a higher dose than the physiological dose, create a mild inflammatory condition that activates EPCs and boosts their regenerative features. Our results reveal for the first time that EPC-EVs, when used at a high dose, enhance EPC regenerative functions without altering their endothelial identity.


Subject(s)
Endothelial Progenitor Cells , Extracellular Vesicles , Humans , Endothelial Progenitor Cells/metabolism , Fetal Blood , Inflammation/metabolism , Cell Movement , Cells, Cultured
2.
J Control Release ; 355: 501-514, 2023 03.
Article in English | MEDLINE | ID: mdl-36764527

ABSTRACT

A new paradigm has emerged recently, which consists in shifting from cell therapy to a more flexible acellular "extracellular vesicle (EV) therapy" approach, thereby opening a new and promising field in nanomedicine. Important technical limitations have still to be addressed for the large-scale production of clinical-grade EV. Cells are cultured in media supplemented with human platelet lysate (hPL) (xenogenic-free) or GMP-grade fetal calf serum (FCS). However, these additives contain high amounts of EV that cannot be separated from cell-secreted -EV. Therefore, cells are generally maintained in additive-free medium during the EV secretion phase, however this can substantially limit their survival. In the present work, we developed a method to prepare vesicle-free hPL (EV-free hPL) or vesicle-free FCS (EV-free FCS) using tangential flow filtration (TFF). We show a very efficient EV depletion (>98%) for both pure hPL and FCS, with a highly conserved protein content. Culture medium containing our EV-free additives supported the survival of human bone marrow MSC (BM-MSC). MSC could survive at least 216 h, their conditioned medium being collected and changed every 72 h. Both the cell survival and the cumulative EV production were substantially higher than in the starving conditions classically used for EV production. In EV-free hPL containing medium, we show that purified EV kept their morphologic and molecular characteristics throughout the production. Finally, we tested our additives with 3 other cell types, human primary Endothelial Colony Forming Cells (ECFC) and two non-adherent human cell lines, Jurkat and THP-1. We confirmed that both EV-free hPL and FCS were able to maintain cell survival and EV production for at least 216 h. Our method provides therefore a new option to help producing large amounts of EV from virtually any mammalian cells, particularly those that do not tolerate starvation. This method can apply to any animal serum for research and development purpose. Moreover, EV-free hPL is clinical-grade compatible and allows preparing xenobiotic-free media for massive therapeutic EV production in both 2D (cell plates) and 3D (bioreactor) setting.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Humans , Cells, Cultured , Cell Differentiation , Cell Proliferation , Blood Platelets/metabolism , Cell Culture Techniques , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL