Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Acta Pharmacol Sin ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907048

ABSTRACT

Adjuvants for vaccines with characteristics of improving adaptive immunity particularly via leverage of antigen presenting cells (APCs) are currently lacking. In a previous work we obtained a new soluble 300 kDa homogeneous ß-glucan named GFPBW1 from the fruit bodies of Granola frondosa. GFPBW1 could activate macrophages by targeting dendritic cell associated C-type lectin 1 (Dectin-1)/Syk/NF-κB signaling to achieve antitumour effects. In this study the adjuvant effects of GFPBW1 were explored with OVA-antigen and B16-OVA tumor model. We showed that GFPBW1 (5, 50, 500 µg/mL) dose-dependently promoted activation and maturation of APCs in vitro by increasing CD80, CD86 and MHC II expression. We immunized female mice with OVA in combination with GFPBW1 (50 or 300 µg) twice with an interval of two weeks. GFPBW1 markedly and dose-dependently increased OVA-specific antibody titers of different subtypes including IgG1, IgG2a, IgG2b and IgG3, suggesting that it could serve as an adjuvant for both Th1 and Th2 type immune responses. Furthermore, GFPBW1 in combination with aluminum significantly increased the titers of OVA-specific IgG2a and IgG2b, but not those of IgG1, suggesting that GFPBW1 could be used as a co-adjuvant of aluminum to compensate for Th1 deficiency. For mice immunized with OVA plus GFPBW1, no obvious pathological injury was observed in either major organs or injection sites, and no abnormalities were noted for any of the hematological parameters. When GFPBW1 served as an adjuvant in the B16-OVA cancer vaccine models, it could accomplish entire tumor suppression with preventive vaccines, and enhance antitumour efficacy with therapeutic vaccines. Differentially expressed genes were found to be enriched in antigen processing process, specifically increased tumor infiltration of DCs, B1 cells and plasma cells in the OVA plus GFPBW1 group, in accordance with its activation and maturation function of APCs. Collectively, this study systematically describes the properties of GFPBW1 as a novel potent and safe adjuvant and highlights its great potential in vaccine development.

2.
Int J Mol Sci ; 23(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36555571

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic disease manifested in hepatic steatosis, inflammation, fibrosis, etc., which affects over one-quarter of the population around the world. Since no effective therapeutic drugs are available to cope with this widespread epidemic, the functional research of genes with altered expression during NAFLD helps understand the pathogenesis of this disease and the development of new potential therapeutic targets for drugs. In the current work, we discovered via the analysis of the Gene Expression Omnibus (GEO) dataset that cysteine sulfinic acid decarboxylase (CSAD) decreased significantly in NAFLD patients, which was also confirmed in multiple NAFLD mouse models (HFD-fed C57BL/6J, db/db and HFHFrHC-fed C57BL/6J mice). Next, CSAD's function in the progression of NAFLD was explored using AAV-mediated liver-directed gene overexpression in an HFD-fed mouse model, where the overexpression of CSAD in the liver could alleviate NAFLD-associated pathologies, including body weight, liver/body weight ratio, hepatic triglyceride and total cholesterol, and the degree of steatosis. Mechanically, we found that the overexpression of CSAD could increase the expression of some genes related to fatty acid ß-oxidation (Acad1, Ppara, and Acox1). Furthermore, we also detected that CSAD could improve mitochondrial injury in vitro and in vivo. Finally, we proposed that the effect of CSAD on lipid accumulation might be independent of the taurine pathway. In conclusion, we demonstrated that CSAD is involved in the development of NAFLD as a protective factor, which suggested that CSAD has the potential to become a new target for drug discovery in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Diet, High-Fat/adverse effects , Mice, Inbred C57BL , Liver/metabolism , Body Weight , Lipids/pharmacology , Lipid Metabolism/genetics
3.
J Immunother Cancer ; 10(10)2022 Oct.
Article in English | MEDLINE | ID: mdl-36253000

ABSTRACT

BACKGROUND: Various tumors are insensitive to immune checkpoint blockade (ICB) therapy. Toll-like receptors (TLRs) establish the link between innate and adaptive immunity, which can assist T-cell activation and serve as promising targets for combination to enhance ICB therapy. Here, we aimed to improve efficacy for anti-programmed death ligand 1 (PD-L1) therapy by developing a PD-L1/TLR7 dual-targeting nanobody-drug conjugate (NDC), based on the PD-L1 nanobodies and TLR7 agonist we developed. METHODS: PD-L1 nanobodies were obtained by phage display screening and identified through T-cell activation bioassay, in vivo imaging and quantitative biodistribution study. Immune activation and PD-L1-inducing of TLR7 agonists were evaluated in diverse innate cell models. We constructed PD-L1/TLR7 dual-targeting NDCs by chemically coupling PD-L1 nanobodies and TLR7 agonists. The antitumor effect was evaluated via several murine or humanized solid tumor models. Immunophenotyping, immune cell depletion, tumor rechallenge, RNA sequencing and PD-L1-deficient models were combined to determine the mechanism for NDCs function. The dynamics of the in vivo behaviors of NDCs were assessed based on multiorgan changes in PD-L1 levels. RESULTS: The screened PD-L1 nanobodies were characterized as tumor-targeting and alleviated T-cell immunosuppression. The TLR7 agonists induced broad innate immune responses and intratumoral PD-L1 expression on antigen-presenting cells (APCs), and its antitumor effect was dependent on intratumoral delivery. The combination of TLR7 agonists and PD-L1 nanobodies activated both innate and adaptive immunity and upregulated PD-L1-related signaling pathways. After coupling to form dual-targeting NDCs, TLR7 agonists and PD-L1 nanobodies exerted synergistic antitumor effects and safety in either 'hot' or 'cold' tumor and early or advanced tumor models, reshaped the tumor immune microenvironment and induced antitumor immune memory. CD8+ T cells and natural killer cells were the main effector cells for NDCs to function. NDCs can promote PD-L1 expression on intratumoral APCs and tumor cells, and subsequently achieve targeted enrichment in tumors. Moreover, the efficacy of NDCs is biased toward dependence on host expression of PD-L1. CONCLUSIONS: The novel PD-L1/TLR7 dual-targeting NDC exhibited potent efficacy against heterogeneous tumors through orchestrating innate and adaptive immunity, which could act as a promising strategy to improve ICB therapy and shows prospects for clinical development.


Subject(s)
Neoplasms , Single-Domain Antibodies , Animals , Antigens, Neoplasm , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes , Humans , Immune Checkpoint Inhibitors , Mice , Single-Domain Antibodies/metabolism , Single-Domain Antibodies/pharmacology , Tissue Distribution , Toll-Like Receptor 7/agonists , Tumor Microenvironment
4.
Biomed Pharmacother ; 153: 113512, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36076599

ABSTRACT

Primary sclerosing cholangitis (PSC) is a rare but progressive and fatal autoimmune disease without clear pathogenesis and effective therapies. Peribiliary macrophage recruitment and peribiliary gland (PBG) proliferation and expansion have been associated with various cholangiopathies. This study aimed to evaluate the involvement of the PBG niche and macrophages in PSC progression, potential treatment strategies, and the underlying mechanism in acute and chronic experimental PSC. First, the upregulation of chemokines and fibrosis in PSC patients was confirmed via RNA-seq analysis. In vivo data illustrated that inflammation and fibrosis are the main characteristics, and recession of these can effectively interfere with PSC. Histopathological staining and RT-PCR revealed that more significant ductular reaction (DR) and PBG proliferation in the chronic PSC model, in which fibrosis mainly accumulated in the peribiliary area. In vitro, a transwell migration experiment showed that MCP-1 secreted by cholangiocytes in PBG niche, which recruited monocyte-derived macrophages (MoMFs) to the peribiliary area and promoted inflammation and fibrosis. Then, the luciferase assay and EMSA showed that POU6F1 could activate MCP-1 transcription. Furthermore, 18ß-Glycyrrhetinic acid (GA) reduced macrophages and fibrosis accumulated in the peribiliary, space and reduced PBG proliferation to benefit acute and chronic PSC models. Collectively, our results indicated that POU6F1 transcriptionally activates MCP-1, promoting the recruitment and infiltration of MoMFs and fibrosis into the PBG niche in PSC mouse models, and GA effectively suppressed the above phenotypes. These findings provide potential targets and a theoretical basis for the clinical treatment of PSC.


Subject(s)
Cholangitis, Sclerosing , Animals , Cholangitis, Sclerosing/pathology , Disease Models, Animal , Epithelial Cells/pathology , Fibrosis , Inflammation/pathology , Mice
5.
Mol Cancer Res ; 20(12): 1724-1738, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36066963

ABSTRACT

Cancer progression is highly dependent on the ability of cancer cell tumor formation, in which epigenetic modulation plays an essential role. However, the epigenetic factors promoting breast tumor formation are less known. Screened from three-dimensional (3D)-sphere tumor formation model, HMGN5 that regulates chromatin structures became the candidate therapeutic target in breast cancer, though its role is obscure. HMGN5 is highly expressed in 3D-spheres of breast cancer cells and clinical tumors, also an unfavorable prognostic marker in patients. Furthermore, HMGN5 controls tumor formation and metastasis of breast cancer cells in vitro and in vivo. Mechanistically, HMGN5 is governed by active STAT3 transcriptionally and further escorts STAT3 to shape the oncogenic chromatin landscape and transcriptional program. More importantly, interference of HMGN5 by nanovehicle-packaged siRNA effectively inhibits tumor growth in breast cancer cell-derived xenograft mice model. IMPLICATIONS: Our findings reveal a novel feed-forward circuit between HMGN5 and STAT3 in promoting breast cancer tumorigenesis and suggest HMGN5 as a novel epigenetic therapeutic target in STAT3-hyperactive breast cancer.


Subject(s)
Breast Neoplasms , HMGN Proteins , Humans , Mice , Animals , Female , HMGN Proteins/genetics , HMGN Proteins/metabolism , Chromatin/genetics , Cell Line, Tumor , Cell Proliferation , Apoptosis/genetics , Trans-Activators/metabolism , Breast Neoplasms/genetics , STAT3 Transcription Factor/genetics , Carcinogenesis/genetics
6.
Mol Biomed ; 3(1): 25, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35945406

ABSTRACT

Lipotoxicity induced by the overload of lipid in the liver, especially excess free cholesterol (FC), has been recognized as one of driving factors in the transition from non-alcoholic fatty liver (NAFL) to non-alcoholic steatohepatitis (NASH). MicroRNA (miR)-379-5p has been reported to play regulatory roles in hepatic triglyceride homeostasis, but the relationship of miR-379-5p and hepatic cholesterol homeostasis has never been touched. In the current study, we found that hepatic miR-379-5p levels were decreased obviously in NAFLD patients and model mice compared with their controls. Moreover, miR-379-5p was discovered to be able to inhibit intracellular FC accumulation and alleviate mitochondrial damage induced by palmitic acid (PA) in vitro. Furthermore, overexpression of miR-379-5p in HFHC-fed db/db mice could reduce the level of hepatic total cholesterol (TC) and FC, and ameliorate hepatic injury reflected by the lower serum alanine aminotransferase (ALT) and aspartate transaminase (AST). Subsequently, by combining spectrometry (MS) and luciferase assay, we identified miR-379-5p suppressed STAT1 through transcriptional and translational regulation. Finally, we confirmed that STAT1 was a transcriptional factor of HMGCS1. In conclusion, miR-379-5p inhibits STAT1 expression and regulates cholesterol metabolism through the STAT1/HMGCS1 axis, suggesting miR-379-5p might be applied to improve lipotoxicity in the future.

7.
Front Pharmacol ; 13: 858795, 2022.
Article in English | MEDLINE | ID: mdl-35795562

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is an increasingly epidemic metabolic disease with complex pathogenesis. Multi-target therapy may be an effective strategy for NAFLD treatment, and traditional Chinese medicine (TCM) characterized by multi-ingredients and multi-targets has unique advantages in long-term clinical practice. Zexie-Baizhu (ZXBZ) decoction is a Chinese classical formula to treat body fluid disorders initially. Although many bioactive monomers from Zexie and Baizhu had been discovered to improve lipid disorders, limited research studies were focused on the aqueous decoction of ZXBZ, the original clinical formulation. In the current study, we identified 94% chemical composition of ZXBZ decoction and first discovered its hepaprotective effect in a gubra-amylin NASH (GAN) diet-induced NAFLD mouse model. Based on metabolomics and transcriptomics analyses, we speculated that lipid and glucose metabolisms might be regulated by ZXBZ decoction, which was further confirmed by improved dyslipidemia and hepatic steatosis in ZXBZ groups. Consistently with cross-omics analysis, we discovered ZXBZ decoction could influence two energy sensors, Sirt1 and AMPK, and subsequently affect related proteins involved in lipid biosynthesis, catabolism, and transport. In conclusion, ZXBZ decoction regulated energy sensors, consequently impeded lipogenesis, and promoted fatty acid oxidation (FAO) to alleviate lipid disorders and protect the liver in NAFLD models, which suggested ZXBZ decoction might be a promising treatment for NAFLD.

9.
Toxicol Res (Camb) ; 10(3): 436-445, 2021 May.
Article in English | MEDLINE | ID: mdl-34141157

ABSTRACT

Aristolochic acid I (AAI) is a natural bioactive substance found in plants from the Aristolochiaceae family and impairs spermatogenesis. However, whether AAI-induced spermatogenesis impairment starts at the early stages of spermatogenesis has not yet been determined. Spermatogonial stem cells (SSCs) are undifferentiated spermatogonia that balance self-renewing and differentiating divisions to maintain spermatogenesis throughout adult life and are the only adult stem cells capable of passing genes onto the next generation. The objective of this study was to investigate whether AAI impairs SSCs during the early stages of spermatogenesis. After AAI treatment, we observed looser, smaller and fewer colonies, decreased cell viability, a decreased relative cell proliferation index, and increased apoptosis in SSCs in a concentration- and/or time-dependent manner. Additionally, AAI promoted apoptosis in SSCs, which was accompanied by upregulation of caspase 3, P53 and BAX expression and downregulation of Bcl-2 expression, and suppressed autophagy, which was accompanied by upregulation of P62 expression and downregulation of ATG5 and LC3B expression, in a concentration-dependent manner. Then we found that AAI impaired spermatogenesis in rats, as identified by degeneration of the seminiferous epithelium, and increased apoptosis of testicular cells. Taken together, our findings demonstrate that AAI causes damage to SSCs and implicate apoptosis and autophagy in this process. The impairment of SSCs may contribute to AAI-induced testicular impairment. Our findings provide crucial information for the human application of botanical products containing trace amounts of AAI.

10.
Cell Death Dis ; 12(5): 480, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33986260

ABSTRACT

Acute liver injury (ALI) has multiple causes and results in liver dysfunction. Severe or persistent liver injury eventually leads to liver failure and even death. Pregnane X receptor (PXR)-null mice present more severe liver damage and lower rates of autophagy. 18ß-glycyrrhetinic acid (GA) has been proposed as a promising hepatoprotective agent. We hypothesized that GA significantly alleivates D-GalN/LPS-induced ALI, which involved in PXR-mediated autophagy and lysosome biogenesis. We found that GA can significantly decrease hepatocyte apoptosis and increase the hepatic autophagy marker LC3-B. Ad-mCherry-GFP-LC3 tandem fluorescence, RNA-seq and real-time PCR indicated that GA may stabilize autophagosomes and lysosomes and inhibit autophagosome-lysosome fusion. Simultaneously, GA markedly activates PXR, even reversing the D-GalN/LPS-induced reduction of PXR and its downstream genes. In contrast, GA has a weak protective effect in pharmacological inhibition of PXR and PXR-null mice, which significantly affected apoptosis- and autophagy-related genes. PXR knockout interferes with the stability of autophagosomes and lysosomes, preventing GA reducing the expression of lysosomal genes such as Cst B and TPP1, and suppressing autophagy flow. Therefore, we believe that GA increases autophagy by inhibiting autophagosome-lysosome fusion and blocked autophagy flux via activation of PXR. In conclusion, our results show that GA activates PXR to regulate autophagy and lysosome biogenesis, represented by inhibiting autophagosome-lysosome fusion and stabilization of lysosome. These results identify a new mechanism by which GA-dependent PXR activation reduces D-GalN/LPS-induced acute liver injury.


Subject(s)
Autophagy/drug effects , Chemical and Drug Induced Liver Injury/therapy , Glycyrrhetinic Acid/analogs & derivatives , Animals , Glycyrrhetinic Acid/adverse effects , Male , Mice , Rats , Rats, Sprague-Dawley , Tripeptidyl-Peptidase 1
11.
Life Sci ; 276: 119415, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-33775690

ABSTRACT

AIMS: PTEN induced putative kinase 1 (PINK1)-mediated mitophagy process is tightly associated with various age-dependent diseases in mammals. The roles of miRNAs (miRNAs) in the PINK1-mediated mitophagy process are not fully understood. Here we discovered that miR-34a-5p suppresses PINK1 expression directly though two post-transcriptional non-classical binding modes, resulting in inhibition of PINK1-mediated mitophagy process. MAIN METHODS: For in vivo experiments, brains were dissected from 8 weeks old and 40 weeks old C57BL/6 male mice to measure miR-34a-5p expression and PINK1 expression. For in vitro experiments, overexpression of miR-34a-5p mimics in HEK293 cells was performed to investigate the effect of miR-34a-5p on PINK1 expression and its regulatory mechanism, parkin recruitment and mitophagy process. KEY FINDINGS: The level of miR-34a-5p was upregulated and the level of PINK1 mRNA was downregulated in brains of aged mice. Both the 3'-untranslated region (3'UTR) and the Coding DNA sequence (CDS) of PINK1 mRNA were bound to the non-seed region of miR-34a-5p, rather than the seed region, resulting in a decrease in PINK1 expression. Endogenous miR-34a-5p knockout increased PINK1 expression. Further results indicated that miR-34a-5p inhibits mitophagy process by reduction of PINK1. miR-34a-5p hinders phosphorylated Ser65-ubiquitin (pS65-Ub) accumulation, prevents the mitochondrial recruitment of Parkin, attenuates ubiquitination and delays the clearance of damaged mitochondria. SIGNIFICANCE: We firstly found that miR-34a-5p suppresses PINK1 directly and further regulates mitophagy through non-canonical modes. This finding hints at a crucial role of miR-34a-5p implicated in accelerating the pathogenesis of age-related neurological diseases.


Subject(s)
Aging/pathology , MicroRNAs/genetics , Mitochondria/pathology , Mitophagy , Protein Processing, Post-Translational , Ubiquitin-Protein Ligases/metabolism , Aging/metabolism , Animals , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Phosphorylation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics
12.
Acta Pharmacol Sin ; 42(12): 2094-2105, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33686245

ABSTRACT

Aristolochic acid I (AAI) is a well-known nephrotoxic carcinogen, which is currently reported to be also associated with hepatocellular carcinoma (HCC). Whether AAI is a direct hepatocarcinogen remains controversial. In this study we investigated the association between AAI exposure and HCC in adult rats using a sensitive rat liver bioassay with several cofactors. Formation of glutathione S-transferase placental form-positive (GST-P+) foci was used as the marker for preneoplastic lesions/clonal expansion. We first conducted a medium-term (8 weeks) study to investigate whether AAI had any tumor-initiating or -promoting activity. Then a long-term (52 weeks) study was conducted to determine whether AAI can directly induce HCC. We showed that oral administration of single dose of AAI (20, 50, or 100 mg/kg) in combination with partial hepatectomy (PH) to stimulate liver proliferation did not induce typical GST-P+ foci in liver. In the 8-week study, only high dose of AAI (10 mg · kg-1 · d-1, 5 days a week for 6 weeks) in combination with PH significantly increased the number and area of GST-P+ foci initiated by diethylnitrosamine (DEN) in liver. Similarly, only high dose of AAI (10 mg· kg-1· d-1, 5 days a week for 52 weeks) in combination with PH significantly increased the number and area of hepatic GST-P+ foci in the 52-week study. No any nodules or HCC were observed in liver of any AAI-treated groups. In contrast, long-term administration of AAI (0.1, 1, 10 mg· kg-1· d-1) time- and dose-dependently caused death due to the occurrence of cancers in the forestomach, intestine, and/or kidney. Besides, AAI-DNA adducts accumulated in the forestomach, kidney, and liver in a time- and dose-dependent manner. Taken together, AAI promotes clonal expansion only in the high-dose group but did not induce any nodules or HCC in liver of adult rats till their deaths caused by cancers developed in the forestomach, intestine, and/or kidney. Findings from our animal studies will pave the way for further large-scale epidemiological investigation of the associations between AA and HCC.


Subject(s)
Aristolochic Acids/toxicity , Carcinogens/toxicity , Carcinoma, Hepatocellular/etiology , Hepatocytes/metabolism , Liver Neoplasms/etiology , Mutagens/toxicity , Animals , Carcinogenesis/drug effects , Cell Proliferation/drug effects , DNA Adducts/drug effects , Glutathione S-Transferase pi/metabolism , Intestinal Neoplasms/chemically induced , Intestines/pathology , Kidney/pathology , Kidney Neoplasms/chemically induced , Liver/metabolism , Liver/pathology , Male , Rats, Sprague-Dawley , Stomach/pathology , Stomach Neoplasms/chemically induced
13.
Cell Death Differ ; 28(1): 320-336, 2021 01.
Article in English | MEDLINE | ID: mdl-32764647

ABSTRACT

Lysosome is a crucial organelle in charge of degrading proteins and damaged organelles to maintain cellular homeostasis. Transcription factor EB (TFEB) is the master transcription factor regulating lysosomal biogenesis and autophagy. Under external stimuli such as starvation, dephosphorylated TFEB transports into the nucleus to specifically recognize and bind to the coordinated lysosomal expression and regulation (CLEAR) elements at the promotors of autophagy and lysosomal biogenesis-related genes. The function of TFEB in the nucleus is fine regulated but the molecular mechanism is not fully elucidated. In this study, we discovered that miR-30b-5p, a small RNA which is known to regulate a series of genes through posttranscriptional regulation in the cytoplasm, was translocated into the nucleus, bound to the CLEAR elements, suppressed the transcription of TFEB-dependent downstream genes, and further inhibited the lysosomal biogenesis and the autophagic flux; meanwhile, knocking out the endogenous miR-30b-5p by CRISPR/Cas9 technique significantly increased the TFEB-mediated transactivation, resulting in the increased expression of autophagy and lysosomal biogenesis-related genes. Overexpressing miR-30b-5p in mice livers showed a decrease in lysosomal biogenesis and autophagy. These in vitro and in vivo data indicate that miR-30b-5p may inhibit the TFEB-dependent transactivation by binding to the CLEAR elements in the nucleus to regulate the lysosomal biogenesis and autophagy. This novel mechanism of nuclear miRNA regulating gene transcription is conducive to further elucidating the roles of miRNAs in the lysosomal physiological functions and helps to understand the pathogenesis of abnormal autophagy-related diseases.


Subject(s)
Autophagy , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Lysosomes/metabolism , MicroRNAs/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Nucleus/metabolism , HEK293 Cells , HeLa Cells , Humans , Lysosomes/genetics , Male , Mice , Mice, Inbred C57BL , MicroRNAs/genetics
14.
J Hepatol ; 74(1): 8-19, 2021 01.
Article in English | MEDLINE | ID: mdl-32818571

ABSTRACT

BACKGROUND & AIMS: The nuclear location of miRNAs has been known for more than a decade, but the exact function of miRNAs in the nucleus has not been fully elucidated. We previously discovered that intranuclear miR-552-3p has an inhibitory role on gene transcription and contains a particular AGGTCA-like sequence, the cis-elements of the NR1 subfamily of nuclear receptors. Here, we aim to explore the potential effect of miR-552-3p and its AGGTCA-like sequence on NR1s and its possible application in improving hepatic glycolipid metabolism. METHODS: RNA-seq, mass spectrometry, and bioinformatics analysis were used to reveal the possible pathways influenced by miR-552-3p. High fat-high fructose diet-fed mice and db/db mice transfected with AAV2/8-miR-552-3p were established to investigate the in vivo effects of miR-552-3p on hepatic glycolipid metabolism. Fluorescence resonance energy transfer, pull-down, electrophoretic mobility shift, and chromatin immunoprecipitation assays were performed to explore the mechanism by which miR-552-3p regulates NR1s. RT-PCR was conducted to analyse miR-552-3p levels in liver biopsies from patients with NAFLD and normal controls. RESULTS: MiR-552-3p could inhibit metabolic gene expression in vitro and displayed beneficial effects on glycolipid metabolism in vivo. Intranuclear miR-552-3p primarily regulated the LXRα and FXR pathways; this was achieved by its binding to the complementary sequence of AGGTCA to modulate the transcriptional activities of LXRα and FXR. Moreover, LXRα and FXR ligands could restore the effects of miR-552-3p on gene expression and glycolipid metabolism. Additionally, the hepatic miR-552-3p level was significantly decreased in liver samples from patients with NAFLD compared to normal controls. CONCLUSIONS: The mechanism by which miR-552-3p modulates LXRα and FXR has revealed a new method of miRNA-mediated gene regulation. In addition, the beneficial effects in vivo and clinical relevance of miR-552-3p suggest that it might be a potential therapeutic target for the treatment of glycolipid metabolic disease. LAY SUMMARY: Glycolipid metabolic diseases, which have become a major public health concern worldwide, are triggered by abnormalities in lipid and glucose metabolism. Herein, we show that miR-552-3p has the ability to ameliorate hepatic glycolipid metabolic diseases by modulating the transcriptional activities of LXRα and FXR in the nucleus. These findings provide evidence that miR-552-3p may serve as a potential therapeutic target.


Subject(s)
Glycolipids/metabolism , Liver X Receptors/metabolism , Liver , MicroRNAs/metabolism , Non-alcoholic Fatty Liver Disease , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Biopsy/methods , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Drug Discovery , Gene Expression Regulation , Humans , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Mice , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Signal Transduction , Transcriptional Activation
15.
Oncogene ; 39(17): 3473-3488, 2020 04.
Article in English | MEDLINE | ID: mdl-32108166

ABSTRACT

Tumor invasion underlies further metastasis, the leading cause for cancer-related deaths. Deregulation of microRNAs has been identified associated with the malignant behavior of various cancers, including lung adenocarcinoma (LUAD), the major subtype of lung cancer. Here, we showed the significantly positive correlation between miR-629-5p level and tumor invasion in LUAD specimens (n = 49). In a human LUAD metastasis mouse model, H1650 cells (high level of miR-629-5p) were more aggressive than A549 cells (low level of miR-629-5p) in vivo, including higher incidence of vascular invasion and pulmonary colonization. Ectopic expression of miR-629-5p in A549 cells also increased their invasive capability. Then we identified that miR-629-5p promotes LUAD invasion in a mode of dual regulation via tumor cells invasion and endothelial cells permeability, respectively. In tumor cells, miR-629-5p enhanced motility and invasiveness of tumor cells by directly targeting PPWD1 (a cyclophilin), which clinically related to tumor invasion in LUAD specimens. Restoring PPWD1 protein significantly attenuated the invasion-promoting effects of miR-629-5p. Besides, exosomal-miR-629-5p secreted from tumor cells could be transferred to endothelial cells and increased endothelial monolayers permeability by suppressing CELSR1 (a nonclassic-type cadherin), which had a low level in the endothelial cells of invasive LUAD specimens. Activating the expression of CELSR1 in endothelial cells markedly blocked the effect of miR-629-5p. Our study suggests the dual roles of miR-629-5p in tumor cells and endothelial cells for LUAD invasion, implying a therapeutic option to targeting miR-629-5p using the "one stone, two birds" strategy in LUAD.


Subject(s)
Adenocarcinoma of Lung/metabolism , Biomarkers, Tumor/metabolism , Endothelial Cells/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , RNA, Neoplasm/metabolism , A549 Cells , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/therapy , Biomarkers, Tumor/genetics , Cadherins/genetics , Cadherins/metabolism , Endothelial Cells/pathology , HEK293 Cells , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/therapy , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Permeability , RNA, Neoplasm/genetics
16.
Acta Pharmacol Sin ; 41(3): 348-357, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31506573

ABSTRACT

Intestinal mucositis is a common side effect of anticancer regimens that exerts a negative impact on chemotherapy. Superoxide dismutase (SOD) is a potential therapy for mucositis but efficient product is not available because the enzyme is degraded following oral administration or induces an immune reaction after intravascular infusion. Multi-modified Stable Anti-Oxidant Enzymes® (MS-AOE®) is a new recombinant SOD with better resistance to pepsin and trypsin. We referred it as MS-SOD to distinguish from other SODs. In this study we investigated its potential to alleviate 5-FU-induced intestinal injury and the mechanisms. An intestinal mucositis model was established in C57/BL6 mice by 5-day administration of 5-FU (50 mg/kg every day, ip). MS-SOD (800 IU/10 g, ig) was given once daily for 9 days. 5-FU caused severe mucositis with intestinal morphological damage, bodyweight loss and diarrhea; MS-SOD significantly decreased the severity. 5-FU markedly increased reactive oxygen species (ROS) and inflammatory cytokines in the intestine which were ameliorated by MS-SOD. Furthermore, MS-SOD modified intestinal microbes, particularly reduced Verrucomicrobia, compared with the 5-FU group. In Caco2 cells, MS-SOD (250-1000 U/mL) dose-dependently decreased tBHP-induced ROS generation. In RAW264.7 cells, MS-SOD (500 U/mL) had no effect on LPS-induced inflammatory cytokines, but inhibited iNOS expression. These results demonstrate that MS-SOD can scavenge ROS at the initial stage of injury, thus play an indirect role in anti-inflammatory and barrier protein protection. In conclusion, MS-SOD attenuates 5-FU-induced intestinal mucositis by suppressing oxidative stress and inflammation, and influencing microbes. MS-SOD may exert beneficial effect in prevention of intestinal mucositis during chemotherapy in clinic.


Subject(s)
Fluorouracil/adverse effects , Intestinal Mucosa/metabolism , Superoxide Dismutase/metabolism , Administration, Oral , Animals , Fluorouracil/administration & dosage , Fluorouracil/metabolism , Injections, Intraperitoneal , Intestinal Mucosa/pathology , Male , Mice , Mice, Inbred C57BL , Recombinant Proteins/administration & dosage , Recombinant Proteins/metabolism , Superoxide Dismutase/administration & dosage
17.
Life Sci ; 232: 116644, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31301418

ABSTRACT

AIMS: (5R)-5-hydroxytriptolide (LLDT-8) is a triptolide analog with excellent capability against cancers, cerebral ischemic injury and rheumatoid arthritis. Here, we discovered its hepatoprotective effects in a mouse model of non-alcoholic fatty liver disease (NAFLD) by ameliorating liver lipid accumulation. MAIN METHODS: Male C57BL/6J mice were fed with a high-fat/high-fructose (HFHFr) diet for 29 weeks to induce the pathological phenomena of NAFLD. Then the mice were treated with LLDT-8 (0.5mg/kg and 1mg/kg) or Vehicle for 8 weeks. Finally, the serum biochemical indexes, liver histological features, fatty acids (FAs) profile and related gene expression in liver were detected to investigate the effect of LLDT-8 on lipid accumulation and its possible mechanism. KEY FINDINGS: LLDT-8 treatment significantly inhibited hepatic injury featured by the decrease of serum alanine aminotransferase (ALT) and aspartate transaminase (AST), the lessening of hepatic ballooning and macrovesicular steatosis. Moreover, LLDT-8 could downregulate the expression of stearoyl-CoA desaturase 1 (SCD1), which further led to the lower ratios of C16:1/C16:0 and C18:1/C18:0 and thus inhibited lipid synthesis. LLDT-8 treatment also could upregulate liver peroxisome proliferator-activated receptor α (PPARα), carnitine palmitoyltransferase 1a (Cpt1a), peroxisomal acyl-CoA oxidase 1 (Acox1), long-chain acyl-CoA dehydrogenase (Acadl) and medium-chain acyl-CoA dehydrogenase (Acadm) expression levels involved in fatty acids oxidation (FAO) and markedly promoted lipolysis. SIGNIFICANCE: Our results provide a novel application of LLDT-8 in improving NAFLD.


Subject(s)
Diterpenes/pharmacology , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Liver/drug effects , Alanine Transaminase/blood , Animals , Aspartate Aminotransferases/blood , Diet, High-Fat , Disease Models, Animal , Fructose/administration & dosage , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Oxidation-Reduction , PPAR alpha/metabolism , Triglycerides/metabolism
18.
Acta Pharmacol Sin ; 39(12): 1865-1873, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30061734

ABSTRACT

Cholestasis is a common feature of liver injury, which manifests as bile acid excretion and/or enterohepatic circulation disorders. However, very few effective therapies exist for cholestasis. Recently, 18ß-Glycyrrhetinic acid (18b-GA), a major metabolic component of glycyrrhizin, which is the main ingredient of licorice, was reported to protect against alpha-naphthylisothiocyanate (ANIT)-induced cholestasis. However, its protective mechanism remains unclear. We hypothesized that 18b-GA may stimulate the signaling pathway of bile acid (BA) transportation in hepatocytes, resulting its hepatoprotective effect. According to the results, 18b-GA markedly attenuated ANIT-induced liver injury as indicated the hepatic plasma chemistry index and histopathology examination. In addition, the expression levels of nuclear factors, including Sirt1, FXR and Nrf2, and their target efflux transporters in the liver, which mainly mediate bile acid homeostasis in hepatocytes, significantly increased. Furthermore, we first revealed that 18b-GA treatment significantly activated FXR, and which can be significantly reduced by EX-527 (a potent and selective Sirt1 inhibitor), indicating that 18b-GA activates FXR through Sirt1. Taken together, 18b-GA confers hepatoprotection against ANIT-induced cholestasis by activating FXR through Sirt1, which promotes gene expression of the efflux transporter, and consequently attenuates dysregulation of bile acid homeostasis in hepatocyte compartments.


Subject(s)
Cholestasis/prevention & control , Glycyrrhetinic Acid/analogs & derivatives , Protective Agents/therapeutic use , Receptors, Cytoplasmic and Nuclear/metabolism , Signal Transduction/drug effects , Sirtuin 1/metabolism , 1-Naphthylisothiocyanate , Animals , Cholestasis/chemically induced , Glycyrrhetinic Acid/therapeutic use , Male , NF-E2-Related Factor 2/metabolism , Rats, Sprague-Dawley
19.
Mol Ther ; 26(6): 1457-1470, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29724685

ABSTRACT

CH12 is a novel humanized monoclonal antibody against epidermal growth factor receptor variant III (EGFRvIII) for cancer treatment. Unfortunately, in pre-clinical safety evaluation studies, acute thrombocytopenia was observed after administration of CH12 in cynomolgus monkeys, but not rats. More importantly, in vitro experiments found that CH12 can bind and activate platelets in cynomolgus monkey, but not human peripheral blood samples. Cynomolgus monkey-specific thrombocytopenia has been reported previously; however, the underlying mechanism remains unclear. Here, we first showed that CH12 induced thrombocytopenia in cynomolgus monkeys through off-target platelet binding and activation, resulting in platelet destruction. We subsequently found that integrin αIIbß3 (which is expressed on platelets) contributed to this off-target toxicity. Furthermore, three-dimensional structural modeling of the αIIbß3 molecules in cynomolgus monkeys, humans, and rats suggested that an additional unique loop exists in the ligand-binding pocket of the αIIb subunit in cynomolgus monkeys, which may explain why CH12 binds to platelets only in cynomolgus monkeys. Moreover, this study supported the hypothesis that the minor differences between cynomolgus monkeys and humans can confuse human risk assessments and suggests that species differences can help the prediction of human risks and avoid losses in drug development.


Subject(s)
Antibodies, Monoclonal/metabolism , Integrin alpha2/metabolism , Integrin beta3/metabolism , Thrombocytopenia/immunology , Thrombocytopenia/metabolism , Animals , Female , Humans , Macaca fascicularis , Male , Rats
20.
Drug Chem Toxicol ; 36(4): 443-50, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23534454

ABSTRACT

Allisartan isoproxil (ALS-3) is a selective, nonpeptide blocker of the angiotensin II type 1 receptor. It is a new antihypertensive drug under development with a novel chemical structure. The aim of this study was to evaluate the potential toxicity of ALS-3 in Sprague-Dawley rats. Animals were orally administered either vehicle or ALS-3 at doses of 20, 80 and 320 mg/kg once-daily for 26 weeks, followed by a 6-week recovery period. Toxicity was assessed by mortality, clinical signs, body weight, food consumption, hematology, coagulation, serum chemistry, gross necropsy, organ weights and microscopic examination. Decreased body-weight gain was noted at 320 mg/kg/day in both sexes as well as at the 80-mg/kg/day dose in females. Food consumption was decreased at all doses in males and at 80- and 320-mg/kg/day doses in females. Decreased erythrocyte parameters (erythrocyte count, hemoglobin and hematocrit) were observed in males receiving 320 mg/kg/day. Elevated urea nitrogen (BUN), increased kidney weight, decreased heart weight and exacerbation of chronic progressive nephropathy (CPN) severity were all observed in males at 80 and 320 mg/kg/day. However, only an exacerbated incidence of CPN was observed in females at 320 mg/kg/day. All changes were reversed after the 6-week recovery period, except BUN and CPN. Based on these results, we concluded that a dose of 20 mg/kg/day was the no observed adverse effect level. The toxicity target organ was the kidney. Males were more affected than females.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/toxicity , Antihypertensive Agents/toxicity , Biphenyl Compounds/toxicity , Imidazoles/toxicity , Toxicity Tests/methods , Administration, Oral , Angiotensin II Type 1 Receptor Blockers/administration & dosage , Animals , Antihypertensive Agents/administration & dosage , Blood Chemical Analysis , Blood Coagulation Tests/methods , Body Weight/drug effects , Dose-Response Relationship, Drug , Eating/drug effects , Erythrocytes/drug effects , Female , Heart/drug effects , Kidney/drug effects , Male , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...