Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 16(15): 7363-7377, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38411498

ABSTRACT

Reactive oxygen species (ROS) are an array of derivatives of molecular oxygen that participate in multiple physiological processes under the control of redox homeostasis. However, under pathological conditions, the over-production of ROS often leads to oxidative stress and inflammatory reactions, indicating a potential therapeutic target. With the rapid development of nucleic acid nanotechnology, scientists have exploited various DNA nanostructures with remarkable biocompatibility, programmability, and structural stability. Among these novel organic nanomaterials, a group of skeleton-like framework nucleic acid (FNA) nanostructures attracts the most interest due to their outstanding self-assembly, cellular endocytosis, addressability, and functionality. Surprisingly, different FNAs manifest similarly satisfactory antioxidative and anti-inflammatory effects during their biomedical application process. First, they are intrinsically endowed with the ability to neutralize ROS due to their DNA nature. Therefore, they are extensively involved in the complicated inflammatory signaling network. Moreover, the outstanding editability of FNAs also allows for flexible modifications with nucleic acids, aptamers, peptides, antibodies, low-molecular-weight drugs, and so on, thus further strengthening the targeting and therapeutic ability. This review focuses on the ROS-scavenging potential of three representative FNAs, including tetrahedral framework nucleic acids (tFNAs), DNA origami, and DNA hydrogels, to summarize the recent advances in their anti-inflammatory therapy applications. Although FNAs exhibit great potential in treating inflammatory diseases as promising ROS scavengers, massive efforts still need to be made to overcome the emerging challenges in their clinical translation.


Subject(s)
Nanostructures , Nucleic Acids , Nucleic Acids/chemistry , Reactive Oxygen Species , DNA/chemistry , Nanostructures/chemistry , Anti-Inflammatory Agents
2.
RSC Adv ; 13(37): 26288-26301, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37670995

ABSTRACT

Cancer poses a great threat to human life, and current cancer treatments, such as radiotherapy, chemotherapy, and surgery, have significant side effects and limitations that hinder their application. Nucleic acid nanomaterials have specific spatial configurations and can be used as nanocarriers to deliver different therapeutic drugs, thereby enabling various biomedical applications, such as biosensors and cancer therapy. In recent decades, a variety of DNA nanostructures have been synthesized, and they have demonstrated remarkable potential in cancer therapy related applications, such as DNA origami structures, tetrahedral framework nucleic acids, and dynamic DNA nanostructures. Importantly, more attention is also being paid to RNA nanostructures, which play an important role in gene therapy. Therefore, this review introduces the developmental history of nucleic acid nanotechnology, summarizes the applications of DNA and RNA nanostructures for tumor treatment, and discusses the development opportunities for nucleic acid nanomaterials in the future.

3.
Front Pharmacol ; 12: 664123, 2021.
Article in English | MEDLINE | ID: mdl-33967809

ABSTRACT

Cancer is a life-threatening disease, and there is a significant need for novel technologies to treat cancer with an effective outcome and low toxicity. Photothermal therapy (PTT) is a noninvasive therapeutic tool that transports nanomaterials into tumors, absorbing light energy and converting it into heat, thus killing tumor cells. Gold nanorods (GNRs) have attracted widespread attention in recent years due to their unique optical and electronic properties and potential applications in biological imaging, molecular detection, and drug delivery, especially in the PTT of cancer and other diseases. This review summarizes the recent progress in the synthesis methods and surface functionalization of GNRs for PTT. The current major synthetic methods of GNRs and recently improved measures to reduce toxicity, increase yield, and control particle size and shape are first introduced, followed by various surface functionalization approaches to construct a controlled drug release system, increase cell uptake, and improve pharmacokinetics and tumor-targeting effect, thus enhancing the photothermal effect of killing the tumor. Finally, a brief outlook for the future development of GNRs modification and functionalization in PTT is proposed.

4.
J Biomed Mater Res A ; 108(12): 2395-2408, 2020 12.
Article in English | MEDLINE | ID: mdl-32379385

ABSTRACT

Because of excellent biocompatibility, antioxidant activity, and anti-caries ability, epigallocatechin-3-gallate (EGCG) has been widely studied in the treatment of oral diseases, such as periodontal disease, oral cancer, and dental caries. To reach the site of the lesion or achieve sustained release, play the role of anti-caries, anti-inflammatory, or to maintain or improve the physical properties of the modified material,EGCG need to be cross-linked or embedded with dental adhesives, barrier membranes, bone replacement materials, tissue regeneration materials, and antimicrobial anti-caries materials to better prevent or treat oral diseases. This article reviews the applications of EGCG in oral materials, involving various areas of the oral cavity, reveals their excellent potential, and sees shortcomings in these research to promote the better development of EGCG applications in oral materials such as oral repair materials, bone tissue engineering materials and antibacterial and anti-caries materials.


Subject(s)
Anti-Bacterial Agents , Antioxidants , Cariostatic Agents , Catechin/analogs & derivatives , Dental Caries/drug therapy , Periodontal Diseases/drug therapy , Plant Extracts , Tea/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/therapeutic use , Antioxidants/chemistry , Antioxidants/therapeutic use , Cariostatic Agents/chemistry , Cariostatic Agents/therapeutic use , Catechin/chemistry , Catechin/therapeutic use , Humans , Plant Extracts/chemistry , Plant Extracts/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL