Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
J Mater Chem B ; 12(5): 1208-1216, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38229580

ABSTRACT

Bacteriorhodopsin is a biological material with excellent photosensitivity properties. It can directly convert optical signals into electrical signals and is widely used in various biosensors. Here, we present a bR-based wearable pH biometer that can be used to monitor wound infection. The mechanism of the pH-sensitive effect of the bR electrode is explained, which generates a transient photovoltage under light irradiation and a negative photovoltage when the lamp is turned off. Since the photoelectric signal of bR is affected by different pH values, the photovoltage is changed by adjusting the pH value. The ratio (Vn/Vp) of negative photovoltage (Vn) to positive photovoltage (Vp) has a good linear relationship (R2 = 0.9911) in the pH range of 4.0-10.0. In vitro experiments using rats as a model confirmed that this wearable pH biometer can monitor pH changes that occur in wound infection.


Subject(s)
Bacteriorhodopsins , Wearable Electronic Devices , Wound Infection , Animals , Rats , Photochemistry , Hydrogen-Ion Concentration , Bacteriorhodopsins/chemistry , Bacteriorhodopsins/radiation effects
2.
Bioact Mater ; 11: 268-282, 2022 May.
Article in English | MEDLINE | ID: mdl-34977431

ABSTRACT

Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials. In former times, peptide-based nanomaterials with excellent stability were constructed through self-assembly. Compared with individual peptides, peptide-based self-assembly nanomaterials that form well-ordered superstructures possess many advantages such as good thermo- and mechanical stability, semiconductivity, piezoelectricity and optical properties. Moreover, due to their excellent biocompatibility and biological activity, peptide-based self-assembly nanomaterials have been vastly used in different fields. In this review, we provide the advances of peptide-based self-assembly nanostructures, focusing on the driving forces that dominate peptide self-assembly and assembly mechanisms of peptides. After that, we outline the synthesis and properties of peptide-based nanomaterials, followed by the applications of functional peptide nanomaterials. Finally, we provide perspectives on the challenges and future of peptide-based nanomaterials.

3.
ACS Nano ; 12(4): 3587-3599, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29630825

ABSTRACT

Silicon has proved to be a promising anode material of high-specific capacity for the next-generation lithium ion batteries (LIBs). However, during repeated discharge/charge cycles, Si-based electrodes, especially those in microscale size, pulverize and lose electrical contact with the current collectors due to large volume expansion. Here, we introduce a general method to synthesize Cu@M (M = Si, Al, C, SiO2, Si3N4, Ag, Ti, Ta, SnIn2O5, Au, V, Nb, W, Mg, Fe, Ni, Sn, ZnO, TiN, Al2O3, HfO2, and TiO2) core-shell nanowire arrays on Cu substrates. The resulting Cu@Si nanowire arrays were employed as LIB anodes that can be reused via HCl etching and H2-reduction. Multishelled Cu@Si@Cu microparticles supported on 3D Cu current collectors were further prepared as stable and binder-free LIB anodes. This 3D Cu@Si@Cu structure allows the interior conductive Cu network to effectively accommodate the volume expansion of the electrode and facilitates the contact between the Cu@Si@Cu particles and the current collectors during the repeated insertion/extraction of lithium ions. As a result, the 3D Cu@Si@Cu microparticles at a high Si-loading of 1.08 mg/cm2 showed a capacity retention of 81% after 200 cycles. In addition, charging tests of 3D Cu@Si@Cu-LiFePO4 full cells by a triboelectric nanogenerator with a pulsed current demonstrated that LIBs with silicon anodes can effectively store energy delivered by mechanical energy harvesters.

4.
Nanoscale ; 10(16): 7719-7725, 2018 Apr 26.
Article in English | MEDLINE | ID: mdl-29658015

ABSTRACT

Stretchable energy storage devices are of great importance for the viable applications of wearable/stretchable electronics. Studies on stretchable energy storage devices, especially supercapacitors (SCs), have shown encouraging progress. However, challenges still remain in the pursuit of high specific capacitances and facile fabrication methods. Herein, we report a modular materials fabrication and assembly process for stretchable SCs. With a V2O5/PEDOT composite as the active material, the resulting stretchable SCs exhibited high areal specific capacitances up to 240 mF cm-2 and good capacitance retention at a strain of 50%. To demonstrate the facile assembly process, a stretchable wristband was fabricated by simply assembling SC cells in series to deliver a voltage higher than 2 V. Charging the wristband with a triboelectric nanogenerator (TENG) to light an LED was further demonstrated, indicating the potential to integrate our SCs with environmental energy harvesters for self-powered stretchable devices.

5.
ACS Appl Mater Interfaces ; 10(17): 14850-14856, 2018 May 02.
Article in English | MEDLINE | ID: mdl-29569899

ABSTRACT

Nanogaps as "hot spots" with highly localized surface plasmon can generate ultrastrong electromagnetic fields. Superior to the exterior nanogaps obtained via aggregation and self-assembly, interior nanogaps within Au and Ag nanostructures give stable and reproducible surface-enhanced Raman scattering (SERS) signals. However, the synthesis of nanostructures with interior hot spots is still challenging because of the lack of high-yield strategies and clear design principles. Herein, gold-silver nanoclusters (Au-Ag NCs) with multiple interior hot spots were fabricated as SERS platforms via selective growth of Ag nanoparticles on the tips of Au nanostars (Au NSs). Furthermore, the interior gap sizes of Au-Ag NCs can be facilely tuned by changing the amount of AgNO3 used. Upon 785 nm excitation, single Au-Ag NC350 exhibits 43-fold larger SERS enhancement factor and the optimal signal reproducibility relative to single Au NS. The SERS enhancement factors and signal reproducibility of Au-Ag NCs increase with the decrease of gap sizes. Collectively, the Au-Ag NCs could serve as a flexible, reproducible, and active platform for SERS investigation.

6.
J Am Chem Soc ; 139(16): 5817-5826, 2017 04 26.
Article in English | MEDLINE | ID: mdl-28383888

ABSTRACT

The remarkable synthetically tunable structural, electronic, and optical properties of gold nanocrystals have attracted increasing interest and enabled multidisciplinary applications. Over the past decades, nearly all the possible fundamental shapes of faceted Au nanocrystals have been synthesized, except for only one missing-the trapezohedron enclosed by {hkk} facets. In this report, the unprecedented synthesis of trapezohedral Au nanocrystals with {311} crystal facets was realized. Dimethyl sulfoxide (DMSO) was discovered as a solvent for shaping Au nanocrystals with {311} crystal facets for the first time. Mechanistic studies, together with previous DFT and STM studies, attribute the unique role of DMSO to its ambidentate nature, where both sulfur and oxygen of DMSO can coordinate to gold surface, endowing its unique role in stabilizing high-index {311} facets through a "two center bonding" mode. The DMSO-based synthesis provides a new synthetic tool toward the synthesis of a series of unreported Au nanocrystals with new structures. In particular, a new type of gold bipyramids, the octagonal bipyramids, was first synthesized with additional plasmonic tunability while simultaneously retaining their {311} facets. The application of these new Au nanocrystals in surface-enhanced Raman scattering spectroscopy was investigated, and their shape-dependent performances were demonstrated. These results highlight the tremendous potential of using ambidentate molecules as shape- and surface-directing agents for metal nanocrystals and offer the promise of enabling new synthetic tools toward atomically precise control of surface structures of metal nanocrystals.

7.
Chemistry ; 23(22): 5368-5374, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28244211

ABSTRACT

Li3 VO4 , as a promising intercalation-type anode material for lithium-ion batteries, features a desired discharge potential (ca. 0.5-1.0 V vs. Li/Li+ ) and a good theoretical storage capacity (590 mAh g-1 with three Li+ inserted). However, the poor electrical conductivity of Li3 VO4 hinders its practical application. In the present work, various amounts of oxygen vacancies were introduced in Li3 VO4 through annealing in hydrogen to improve its conductivity. To elucidate the influence of oxygen vacancies on the electrochemical performances of Li3 VO4 , the surface energy of the resulting material was measured with an inverse gas chromatography method. It was found that Li3 VO4 annealed in pure hydrogen at 400 °C for 15 min exhibited a much higher surface energy (60.7 mJ m-2 ) than pristine Li3 VO4 (50.6 mJ m-2 ). The increased surface energy would lower the activation energy of phase transformation during the charge-discharge process, leading to improved electrochemical properties. As a result, the oxygen-deficient Li3 VO4 achieved a significantly improved specific capacity of 495 mAh g-1 at 0.1 Ag-1 (381 mAh g-1 for pristine Li3 VO4 ) and retains 165 mAh g-1 when the current density increases to 8 Ag-1 .

8.
ACS Omega ; 2(2): 546-553, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-30023611

ABSTRACT

The emergence of drug-resistant bacterial pathogens highlights an urgent need for new therapeutic options. Photodynamic therapy (PDT) has emerged as a potential alternative to antibiotics to kill bacteria, which has been used in clinical settings. PDT employs photosensitizers (PSs), light, and oxygen to kill bacteria by generating highly reactive oxygen species (ROS). PDT can target both external and internal structures of bacteria, which does not really require the PSs to enter bacteria. Therefore, bacteria can hardly develop resistance to PDT. However, most of the PSs reported so far are hydrophobic and tend to form aggregates when they interact with bacteria. The aggregation could cause fluorescence quenching and reduce ROS generation, which generally compromises the effects of both imaging and therapy. In this contribution, we report on a Zn(II)-tetradentate-coordinated red-emissive probe with aggregation-induced emission characterization. The probe could selectively image bacteria over mammalian cells. Moreover, the probe shows potent phototoxicity to both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Bacillus subtilis).

9.
Nanoscale ; 9(2): 802-811, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27982151

ABSTRACT

The development of efficient synthesis methods for the preparation of vanadium oxide (V2O5)-graphene holds great promise considering the excellent performance of the composite in electrochemical applications. Herein, we report the cross-linking of a V2O5-graphene hybrid via a vanadium-thiourea redox system, which allowed the assembly of graphene oxide functional groups with V2O5 through the reducing ability of thiourea (TU) under room conditions within an impressively short reaction time (20 min). The resulting 3D composite aerogel forms a highly porous architecture of sulfur-functionalized interconnected networks. Such sulfur-functionalized transition metal oxide-graphene-based aerogels are excellent candidates in energy storage applications. When the vanadium oxide-graphene aerogel was evaluated as an electrode for a supercapacitor, a specific capacitance as high as 484.0 F g-1 at 0.6 A g-1 was obtained in a two-electrode cell configuration. This performance is much higher than that of the vanadium oxide-graphene aerogels prepared in the absence of thiourea. The vanadium oxide-graphene aerogel is able to deliver a remarkable energy density of 43.0 Wh kg-1 at a power density of 0.48 kW kg-1 at 0.6 A g-1 and can hold 24.2 Wh kg-1 at a maximum power density of 9.3 kW kg-1 at 10 A g-1. The symmetric supercapacitor assembled from the aerogel can retain 80% of its initial capacitance after 10 000 cycles.

10.
Angew Chem Int Ed Engl ; 55(21): 6192-6, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27071955

ABSTRACT

The isomerization and optical properties of the cis and trans isomers of tetraphenylethene (TPE) derivatives with aggregation-induced emission (AIEgens) have been sparsely explored. We have now observed the tautomerization-induced isomerization of a hydroxy-substituted derivative, TPETH-OH, under acidic but not under basic conditions. Replacing the proton of the hydroxy group in TPETH-OH with an alkyl group leads to the formation of TPETH-MAL, for which the pure cis and trans isomers were obtained and characterized by HPLC analysis and NMR spectroscopy. Importantly, cis-TPETH-MAL emits yellow fluorescence in DMSO at -20 °C whereas trans-TPETH-MAL shows red fluorescence under the same conditions. Moreover, the geometry of cis- and trans-TPETH-MAL remains unchanged when they undergo thiol-ene reactions to form cis- and trans-TPETH-cRGD, respectively. Collectively, our findings improve our fundamental understanding of the cis/trans isomerization and photophysical properties of TPE derivatives, which will guide further AIEgen design for various applications.

11.
J Am Chem Soc ; 137(33): 10460-3, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26259023

ABSTRACT

Gold nanostars have attracted widespread interest due to their remarkable properties and broad applications in plasmonics, spectroscopy, biomedicine, and energy conversion. However, current synthetic methods of Au nanostars have limited control over their symmetry; most existing nanostars are characterized by having uncertain number of arms with different lengths and random spatial arrangement. This morphological arbitrariness not only hampers the fundamental understanding of the properties of Au nanostars, but also lead to poor reproducibility in their applications. Here we demonstrate that, by using a robust solution-phase method, Au nanostars with unpreceded degree of symmetry control can be obtained in high yield and with remarkable monodispersity. Icosahedral seeds are used to dictate the growth of 3D evenly distributed arms in an Ih symmetric manner. Alkylamines serve as shape-control agent to regulate the growth of the hexagonal pyramidal arms enclosed by high-index facets. Benefiting from their high symmetry, the Au nanostars exhibit superior single-particle SERS performance compared to asymmetric Au nanostars, in terms of both intensity and reproducibility.

12.
Angew Chem Int Ed Engl ; 54(28): 8271-4, 2015 Jul 06.
Article in English | MEDLINE | ID: mdl-26014680

ABSTRACT

Metallic nanocrystals (NCs) with well-defined sizes and shapes represent a new family of model systems for establishing structure-function relationships in heterogeneous catalysis. Here in this study, we show that catalyst poisoning can be utilized as an efficient strategy for nanocrystals shape and composition control, as well as a way to tune the catalytic activity of catalysts. Lead species, a well-known poison for noble-metal catalysts, was investigated in the growth of Pd NCs. We discovered that Pb atoms can be incorporated into the lattice of Pd NCs and form Pd-Pb alloy NCs with tunable composition and crystal facets. As model catalysts, the alloy NCs with different compositions showed different selectivity in the semihydrogenation of phenylacetylene. Pd-Pb alloy NCs with better selectivity than that of the commercial Lindlar catalyst were discovered. This study exemplified that the poisoning effect in catalysis can be explored as efficient shape-directing reagents in NC growth, and more importantly, as a strategy to tailor the performance of catalysts with high selectivity.

13.
Sci Rep ; 5: 8382, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25670352

ABSTRACT

Double-shelled Au/Ag hollow nanoboxes with precisely controlled interior nanogaps (1 to 16 nm) were synthesized for gap-tunable surface-enhanced Raman scattering (SERS). The double-shelled nanoboxes were prepared via a two-step galvanic replacement reaction approach using Ag nanocubes as the templates, while 4-aminothiolphenol (4-ATP) as SERS probe molecules were loaded between the two shells. More than 10-fold enhancement of SERS is observed from the double-shelled nanoboxes than Ag nanocubes. In addition, the SERS of the double-shelled nanoboxes increase significantly with the decrease of gap size, consistent with the theoretical prediction that smaller gap size induces larger localized electromagnetic enhancement.

14.
Chem Sci ; 6(8): 4580-4586, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-28717475

ABSTRACT

Subcellular targeted cancer therapy and in situ monitoring of therapeutic effect are highly desirable for clinical applications. Herein, we report a series of probes by conjugating zero (TPECM-2Br), one (TPECM-1TPP) and two (TPECM-2TPP) triphenylphosphine (TPP) ligands to a fluorogen with aggregation-induced emission (AIE) characteristics. The probes are almost non-emissive as molecularly dissolved species, but they can light up in cell cytoplasm or mitochondria. TPECM-2TPP is found to be able to target mitochondria, depolarize mitochondria membrane potential and selectively exert potent chemo-cytotoxicity on cancer cells. Furthermore, it can efficiently generate singlet oxygen with strong photo-toxicity upon light illumination, which further enhances its anti-cancer effect. On the other hand, TPECM-1TPP can also target mitochondria and generate singlet oxygen to trigger cancer cell apoptosis, but it shows low cytotoxicity in dark. Meanwhile, TPECM-1TPP can report the cellular oxidative stress by visualizing the morphological changes of mitochondria. However, TPECM-2Br does not target mitochondria and shows no obvious anticancer effect either in dark or under light illumination. This study thus highlights the importance of molecular probe design, which yields a new generation of subcellular targeted molecular theranostic agents with multi-function, such as cancer cell imaging, chemotherapy, photodynamic therapy, and in situ monitoring of the therapeutic effect in one go.

15.
Chemistry ; 20(43): 14057-62, 2014 Oct 20.
Article in English | MEDLINE | ID: mdl-25196397

ABSTRACT

CO2-responsive nanoparticles have been attracted increasing interest due to their benign reactions with CO2 that give them gas-switchable properties, which can be easily reversed by mild heating or purging with inert gases. In this work, we have prepared CO2-responsive magnetic nanoparticles in a simple one-pot polyol synthesis using diaminoalkanes as the surfactant. The as-synthesized nanoparticles show excellent reversible aggregation and dispersion in response to alternating purging of N2 and CO2 at room temperature. We found that, among the diaminoalkanes with different chain lengths, 1,8-diaminooctane is the best candidate for the synthesis of CO2-responsive nanoparticles, since it allows good dispersity of the nanoparticles after charging with CO2 and also provides effective aggregation and separation following N2 purging. Moreover, the self-assembly of 1,8-diaminooctane-functionalized nanoparticles can be controlled to form linear aggregates with the assistance of N2 and an external magnetic field, demonstrating an effective response to dual stimuli. This work paves the way for the direct synthesis of a wide range of CO2-responsive nanoparticles.

16.
Nanoscale ; 6(18): 10896-901, 2014 Sep 21.
Article in English | MEDLINE | ID: mdl-25117715

ABSTRACT

Mn3O4 octahedrons with well-defined facets exhibit enhanced catalytic activity and sensing characteristics, and have attracted considerable attention in recent years. However, current fabrication methods for Mn3O4 octahedrons generally produce particles of micron and sub-micron sizes, and impurities such as MnO2 and Mn2O3 are often found. We present the synthesis of Mn3O4 nano-octahedrons with a pure Mn3O4 phase and size down to 50 nm based on a hydrothermal method using Mn(NO3)2 as the manganese source and ethylenediamine (EDA) as the structure-mediating agent. It is found that EDA plays a crucial role in the formation of Mn3O4 nano-octahedrons in regulating both the morphology and the crystal structure of the products. The growth process is proposed to follow a "dissolution-recrystallization" and "capping-molecule assisted growth" mechanism. As electrocatalysts towards the oxygen evolution reaction, the 50 nm Mn3O4 nano-octahedrons demonstrate a considerably enhanced activity compared to 160 nm Mn3O4 octahedrons.

17.
ACS Appl Mater Interfaces ; 6(13): 10265-73, 2014 Jul 09.
Article in English | MEDLINE | ID: mdl-24938478

ABSTRACT

Binary colloidal crystals (BCCs) possess great potentials in tuning material properties by controlling the size ratio of small to large colloidal spheres (γS/L). In this paper, we present a method for the fabrication of BCCs with much more extended size ratios than those obtained in conventional convective self-assembly method. It is found that γS/L can be extended to 0.376 by adding TEOS sol into the colloidal suspension. The resulting polystyrene/silica (PS/SiO2) BCCs show distinctive reflections, indicating their well-ordered structure. The extended size ratios render more flexibility in engineering the photonic bandgap structures of BCCs and hence provide a better platform for developing a range of applications such as photonics, spintronics, sensing and bioseparation.


Subject(s)
Colloids/chemistry , Crystallization
18.
Chem Commun (Camb) ; 50(55): 7318-21, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-24870226

ABSTRACT

A new type of biocompatible draw solute, Na(+)-functionalized carbon quantum dots (Na_CQDs) with ultra-small size and rich ionic species, in forward osmosis (FO) is developed for seawater desalination. The aqueous dispersion of Na_CQDs demonstrates a high osmotic pressure, which allows high FO water flux and negligible reverse solute permeation.

19.
J Am Chem Soc ; 136(8): 3010-2, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24528257

ABSTRACT

Platonic noble metal nanocrystals (NCs) have attracted considerate attention due to their symmetry, aesthetic beauty, and potential applications in catalysis, plasmonics, sensing, and spectroscopy. Although Platonic noble metal NCs with tetrahedral, cubic, octahedral, and icosahedral geometries have been chemically synthesized, the growth of Platonic dodecahedral noble metal NCs remains elusive. Here we propose a crystal structure of Platonic dodecahedral noble metal NCs and show that via a tailored seed-mediated synthetic approach, Platonic dodecahedral Au NCs can be grown from icosahedral multiply twinned Au seeds. By systematically tuning the ratio between {111} and {110} facets grown on the icosahedral Au seeds, NCs with icosahedral, icosidodecahedral, and dodecahedral shapes can be obtained. These shapes represent a family of Au NCs with icosahedral (Ih) symmetry.

20.
Phys Chem Chem Phys ; 16(10): 4672-8, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24469241

ABSTRACT

A DNA-assisted assembly approach is developed to fabricate a capacitor-type electrode material, DNA-functionalized carbon nanotubes (CNTs@DNA), and a battery-type electrode material, DNA@CNTs-bridged MnO2 spheres (CNTs@DNA-MnO2), for asymmetric supercapacitors. An energy density of 11.6 W h kg(-1) is achieved at a power density of 185.5 W kg(-1) with a high MnO2 mass loading of 4.2 mg cm(-2). It is found that DNA assembly plays a critical role in the enhanced supercapacitor performance. This is because while DNA molecules functionalize carbon nanotubes (CNTs) via π-π stacking, their hydrophilic sugar-phosphate backbones also promote the dispersion of CNTs. The resultant CNTs@DNA chains can link multiple MnO2 spheres to form a networked architecture that facilitates charge transfer and effective MnO2 utilization. The improved performance of the asymmetric supercapacitors indicates that DNA-assisted assembly offers a promising approach to the fabrication of high-performance energy storage devices.


Subject(s)
DNA/chemistry , Manganese Compounds/chemistry , Nanospheres/chemistry , Nanotubes, Carbon/chemistry , Oxides/chemistry , Electric Capacitance , Electric Power Supplies , Electrodes , Nanospheres/ultrastructure , Nanotubes, Carbon/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...