Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 60
1.
Science ; 384(6698): 852, 2024 May 24.
Article En | MEDLINE | ID: mdl-38781367

Pioneering Antarctic ecologist and ambassador for soil health.


Ecology , Soil , Portraits as Topic , Antarctic Regions , Ecology/history , History, 20th Century , History, 21st Century , Soil Microbiology , United States
2.
AJPM Focus ; 3(2): 100198, 2024 Apr.
Article En | MEDLINE | ID: mdl-38379957

Community surveillance surveys offer an opportunity to obtain important and timely public health information that may help local municipalities guide their response to public health threats. The objective of this paper is to present approaches, challenges, and solutions from SARS-CoV-2 surveillance surveys conducted in different settings by 2 research teams. For rapid assessment of a representative sample, a 2-stage cluster sampling design was developed by an interdisciplinary team of researchers at Oregon State University between April 2020 and June 2021 across 6 Oregon communities. In 2022, these methods were adapted for New York communities by a team of veterinary, medical, and public health practitioners. Partnerships were established with local medical facilities, health departments, COVID-19 testing sites, and health and public safety staff. Field staff were trained using online modules, field manuals describing survey methods and safety protocols, and in-person meetings with hands-on practice. Private and secure data integration systems and public awareness campaigns were implemented. Pilot surveys and field previews revealed challenges in survey processes that could be addressed before surveys proceeded. Strong leadership, robust trainings, and university-community partnerships proved critical to successful outcomes. Cultivating mutual trust and cooperation among stakeholders is essential to prepare for the next pandemic.

7.
Environ Health Perspect ; 130(6): 67010, 2022 06.
Article En | MEDLINE | ID: mdl-35767012

BACKGROUND: Positive correlations have been reported between wastewater SARS-CoV-2 concentrations and a community's burden of infection, disease or both. However, previous studies mostly compared wastewater to clinical case counts or nonrepresentative convenience samples, limiting their quantitative potential. OBJECTIVES: This study examined whether wastewater SARS-CoV-2 concentrations could provide better estimations for SARS-CoV-2 community prevalence than reported cases of COVID-19. In addition, this study tested whether wastewater-based epidemiology methods could identify neighborhood-level COVID-19 hotspots and SARS-CoV-2 variants. METHODS: Community SARS-CoV-2 prevalence was estimated from eight randomized door-to-door nasal swab sampling events in six Oregon communities of disparate size, location, and demography over a 10-month period. Simultaneously, wastewater SARS-CoV-2 concentrations were quantified at each community's wastewater treatment plant and from 22 Newport, Oregon, neighborhoods. SARS-CoV-2 RNA was sequenced from all positive wastewater and nasal swab samples. Clinically reported case counts were obtained from the Oregon Health Authority. RESULTS: Estimated community SARS-CoV-2 prevalence ranged from 8 to 1,687/10,000 persons. Community wastewater SARS-CoV-2 concentrations ranged from 2.9 to 5.1 log10 gene copies per liter. Wastewater SARS-CoV-2 concentrations were more highly correlated (Pearson's r=0.96; R2=0.91) with community prevalence than were clinically reported cases of COVID-19 (Pearson's r=0.85; R2=0.73). Monte Carlo simulations indicated that wastewater SARS-CoV-2 concentrations were significantly better than clinically reported cases at estimating prevalence (p<0.05). In addition, wastewater analyses determined neighborhood-level COVID-19 hot spots and identified SARS-CoV-2 variants (B.1 and B.1.399) at the neighborhood and city scales. DISCUSSION: The greater reliability of wastewater SARS-CoV-2 concentrations over clinically reported case counts was likely due to systematic biases that affect reported case counts, including variations in access to testing and underreporting of asymptomatic cases. With these advantages, combined with scalability and low costs, wastewater-based epidemiology can be a key component in public health surveillance of COVID-19 and other communicable infections. https://doi.org/10.1289/EHP10289.


COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Oregon/epidemiology , Prevalence , RNA, Viral/genetics , Reproducibility of Results , SARS-CoV-2/genetics , Wastewater , Wastewater-Based Epidemiological Monitoring
8.
Sci Rep ; 12(1): 3802, 2022 03 04.
Article En | MEDLINE | ID: mdl-35246555

The biosphere crisis requires changes to existing business practices. We ask how corporations can become sustainability leaders, when constrained by multiple barriers to collaboration for biosphere stewardship. We describe how scientists motivated, inspired and engaged with ten of the world's largest seafood companies, in a collaborative process aimed to enable science-based and systemic transformations (2015-2021). CEOs faced multiple industry crises in 2015 that incentivized novel approaches. New scientific insights, an invitation to collaborate, and a bold vision of transformative change towards ocean stewardship, created new opportunities and direction. Co-creation of solutions resulted in new knowledge and trust, a joint agenda for action, new capacities, international recognition, formalization of an organization, increased policy influence, time-bound goals, and convergence of corporate change. Independently funded scientists helped remove barriers to cooperation, provided means for reflection, and guided corporate strategies and actions toward ocean stewardship. By 2021, multiple individuals exercised leadership and the initiative had transitioned from preliminary and uncomfortable conversations, to a dynamic, operational organization, with capacity to perform global leadership in the seafood industry. Mobilizing transformational agency through learning, collaboration, and innovation represents a cultural evolution with potential to redirect and accelerate corporate action, to the benefit of business, people and the planet.


Commerce , Conservation of Natural Resources , Humans , Industry , Policy
9.
Science ; 375(6578): 247, 2022 Jan 21.
Article En | MEDLINE | ID: mdl-35014855

A robust democracy requires a common well-spring of reliable information. During his first days in office, US President Biden affirmed that evidence-based decision-making-informed by vigorous science and unimpeded by political interference-would be a pillar of his administration. He directed ambitious actions to implement that goal, including the creation of an interagency Scientific Integrity Task Force, which has just released the first-ever, comprehensive assessment of scientific integrity policy and practices in the US government.

10.
Science ; 373(6561): 1285, 2021 Sep 17.
Article En | MEDLINE | ID: mdl-34529488

Last month, one of the most remarkable scientific endeavors on the planet delivered a report to the world. Hundreds of international scientists volunteered thousands of hours to evaluate more than 14,000 scientific publications, respond to over 78,000 comments, and produce a comprehensive scientific assessment to inform government policy-makers. What topic could justify such an intense global effort? The crisis posed by climate change.

11.
Science ; 373(6560): eabf0861, 2021 Sep 10.
Article En | MEDLINE | ID: mdl-34516798

Marine Protected Areas (MPAs) are conservation tools intended to protect biodiversity, promote healthy and resilient marine ecosystems, and provide societal benefits. Despite codification of MPAs in international agreements, MPA effectiveness is currently undermined by confusion about the many MPA types and consequent wildly differing outcomes. We present a clarifying science-driven framework­The MPA Guide­to aid design and evaluation. The guide categorizes MPAs by stage of establishment and level of protection, specifies the resulting direct and indirect outcomes for biodiversity and human well-being, and describes the key conditions necessary for positive outcomes. Use of this MPA Guide by scientists, managers, policy-makers, and communities can improve effective design, implementation, assessment, and tracking of existing and future MPAs to achieve conservation goals by using scientifically grounded practices.

13.
Nature ; 593(7858): E12, 2021 May.
Article En | MEDLINE | ID: mdl-33903771

A Correction to this paper has been published: https://doi.org/10.1038/s41586-021-03508-0.

15.
Nature ; 592(7854): 397-402, 2021 04.
Article En | MEDLINE | ID: mdl-33731930

The ocean contains unique biodiversity, provides valuable food resources and is a major sink for anthropogenic carbon. Marine protected areas (MPAs) are an effective tool for restoring ocean biodiversity and ecosystem services1,2, but at present only 2.7% of the ocean is highly protected3. This low level of ocean protection is due largely to conflicts with fisheries and other extractive uses. To address this issue, here we developed a conservation planning framework to prioritize highly protected MPAs in places that would result in multiple benefits today and in the future. We find that a substantial increase in ocean protection could have triple benefits, by protecting biodiversity, boosting the yield of fisheries and securing marine carbon stocks that are at risk from human activities. Our results show that most coastal nations contain priority areas that can contribute substantially to achieving these three objectives of biodiversity protection, food provision and carbon storage. A globally coordinated effort could be nearly twice as efficient as uncoordinated, national-level conservation planning. Our flexible prioritization framework could help to inform both national marine spatial plans4 and global targets for marine conservation, food security and climate action.


Biodiversity , Climate , Conservation of Natural Resources , Food Supply , Global Warming/prevention & control , Animals , Carbon Sequestration , Fisheries , Geologic Sediments/chemistry , Human Activities , International Cooperation
17.
Nature ; 591(7851): 551-563, 2021 03.
Article En | MEDLINE | ID: mdl-33762770

The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.


Aquaculture/history , Food Supply/history , Sustainable Development/history , Animal Feed , Animals , Animals, Wild , Fisheries , Fishes , Fresh Water , History, 20th Century , History, 21st Century , Humans , Internationality , Oceans and Seas , Shellfish
18.
Ambio ; 50(4): 834-869, 2021 Apr.
Article En | MEDLINE | ID: mdl-33715097

The COVID-19 pandemic has exposed an interconnected and tightly coupled globalized world in rapid change. This article sets the scientific stage for understanding and responding to such change for global sustainability and resilient societies. We provide a systemic overview of the current situation where people and nature are dynamically intertwined and embedded in the biosphere, placing shocks and extreme events as part of this dynamic; humanity has become the major force in shaping the future of the Earth system as a whole; and the scale and pace of the human dimension have caused climate change, rapid loss of biodiversity, growing inequalities, and loss of resilience to deal with uncertainty and surprise. Taken together, human actions are challenging the biosphere foundation for a prosperous development of civilizations. The Anthropocene reality-of rising system-wide turbulence-calls for transformative change towards sustainable futures. Emerging technologies, social innovations, broader shifts in cultural repertoires, as well as a diverse portfolio of active stewardship of human actions in support of a resilient biosphere are highlighted as essential parts of such transformations.


COVID-19 , Pandemics , Biodiversity , Climate Change , Humans , SARS-CoV-2
20.
Nature ; 588(7836): 95-100, 2020 12.
Article En | MEDLINE | ID: mdl-32814903

Global food demand is rising, and serious questions remain about whether supply can increase sustainably1. Land-based expansion is possible but may exacerbate climate change and biodiversity loss, and compromise the delivery of other ecosystem services2-6. As food from the sea represents only 17% of the current production of edible meat, we ask how much food we can expect the ocean to sustainably produce by 2050. Here we examine the main food-producing sectors in the ocean-wild fisheries, finfish mariculture and bivalve mariculture-to estimate 'sustainable supply curves' that account for ecological, economic, regulatory and technological constraints. We overlay these supply curves with demand scenarios to estimate future seafood production. We find that under our estimated demand shifts and supply scenarios (which account for policy reform and technology improvements), edible food from the sea could increase by 21-44 million tonnes by 2050, a 36-74% increase compared to current yields. This represents 12-25% of the estimated increase in all meat needed to feed 9.8 billion people by 2050. Increases in all three sectors are likely, but are most pronounced for mariculture. Whether these production potentials are realized sustainably will depend on factors such as policy reforms, technological innovation and the extent of future shifts in demand.


Fisheries/supply & distribution , Food Supply/statistics & numerical data , Oceans and Seas , Seafood/supply & distribution , Sustainable Development/trends , Animals , Aquatic Organisms/growth & development , Fisheries/economics , Fishes/growth & development , Food Supply/economics , Humans , Mollusca/growth & development , Seafood/economics , Sustainable Development/economics , Time Factors
...