Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters











Publication year range
1.
Int J Biol Macromol ; 280(Pt 3): 135946, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39332570

ABSTRACT

TiO2 nanoparticles loaded with pistachio shell lignin (8 % and 29 % w/w) were prepared by a hydrothermal wet chemistry approach. The efficient interaction at the molecular level of the biomacromolecule and inorganic component was demonstrated by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Visible (UV-Vis), Fourier transform infrared (FT-IR), dynamic light scattering (DLS), and electron paramagnetic resonance (EPR) analysis. The synergistic combination of lignin and TiO2 nanoparticles played a key role in the functional properties of the hybrid material, which exhibited boosted features compared to the separate organic and inorganic phase. In particular, the hybrid TiO2-lignin nanoparticles showed a broader UV-Vis protection range and remarkable antioxidant performance in aqueous media. They could also better protect human skin explants from the DNA damaging effect of UV radiations compared to TiO2 as indicated by lower levels of p-H2A.X, a marker of DNA damage, at 6 h from exposure. In addition, the samples could protect the skin against the structural damage occurring 24 h post UV radiations by preventing the loss of keratin 10. These results open new perspectives in the exploitation of food-waste derived phenolic polymers for the design of efficient antioxidant materials for skin photoprotection in a circular economy perspective.

2.
J Colloid Interface Sci ; 678(Pt A): 1052-1059, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39236434

ABSTRACT

Here we demonstrate for the first time that an antibody-gold nanoparticles (AuNPs)-polymer conjugate thin-film biosensor can easily be fabricated to selectively capture Tau protein. Gold nanoparticles (AuNPs) are employed as sensing elements, thus capitalizing on their propensity to undergo assembly or disassembly in response to the adsorption or conjugation of various biomolecules on their surface, thereby forming robust interactions with the target analyte. We show that the Tau protein in its different aggregation phases can be detected, by restricting the reaction area on the solid thin polymer film and thus reducing the diffusion effects usually encountered in immunosensors. A limit of detection (LOD) of 460 pg/mL was reached, demonstrating a great potential for detecting Tau in aggregation states. This sensor based on thin polymer film could open new routes for sensing and monitoring Tau protein in biological assays and biomedical diagnosis.

3.
Biosens Bioelectron ; 254: 116234, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38522234

ABSTRACT

It is largely documented that neurodegenerative diseases can be effectively treated only if early diagnosed. In this context, the structural changes of some biomolecules such as Tau, seem to play a key role in neurodegeneration mechanism becoming eligible targets for an early diagnosis. Post-translational modifications are responsible to drive the Tau protein towards a transition phase from a native disorder conformation into a preaggregation state, which then straight recruits the final fibrillization process. Here, we show for the first time the detection of pre-aggregated Tau in artificial urine at femto-molar level, through the concentration effect of the pyro-electrohydrodynamic jet (p-jet) technique. An excellent linear calibration curve is demonstrated at the femto-molar level with a limit of detection (LOD) of 130 fM. Moreover, for the first time we show here the structure stability of the protein after p-jet application through a deep spectroscopic investigation. Thanks to the small volumes required and the relatively compact and cost-effective characteristics, this technique represents an innovative breakthrough in monitoring the early stage associated to neurodegeneration syndromes in different scenarios of point of care (POC) and such as for example in long-term human space exploration missions.


Subject(s)
Biosensing Techniques , Neurodegenerative Diseases , Humans , tau Proteins/chemistry , Neurodegenerative Diseases/diagnosis , Biomarkers
4.
Macromol Biosci ; 24(7): e2400013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38509742

ABSTRACT

The development of biosafe theranostic nanoplatforms has attracted great attention due to their multifunctional behavior, reduced potential toxicity, and improved long-term safety. When considering photoacoustic contrast agents and photothermal conversion tools, melanin and constructs like melanin are highly appealing due to their ability to absorb optical energy and convert it into heat. Following a sustainable approach, in this study, silver-melanin like-silica nanoplatforms are synthesized exploiting different bio-available and inexpensive phenolic acids as potential melanogenic precursors and exploring their role in tuning the final systems architecture. The UV-Vis combined with X-Ray Diffraction investigation proves metallic silver formation, while Transmission Electron Microscopy analysis reveals that different morphologies can be obtained by properly selecting the phenolic precursors. By looking at the characterization results, a tentative formation mechanism is proposed to explain how phenolic precursors' redox behavior may affect the nanoplatforms' structure. The antibacterial activity experiments showed that all synthesized systems have a strong inhibitory effect on Escherichia coli, even at low concentrations. Furthermore, very sensitive Photoacoustic Imaging capabilities and significant photothermal behavior under laser irradiation are exhibited. Finally, a marked influence of phenol nature on the final system architecture is revealed resulting in a significant effect on both biological and photoacoustic features of the obtained systems. These melanin-based hybrid systems exhibit excellent potential as triggerable nanoplatforms for various biomedical applications.


Subject(s)
Escherichia coli , Melanins , Photoacoustic Techniques , Silver , Photoacoustic Techniques/methods , Melanins/chemistry , Escherichia coli/drug effects , Silver/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Silicon Dioxide/chemistry , Humans
5.
ACS Omega ; 9(7): 7793-7805, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405468

ABSTRACT

Hydrogen is expected to largely contribute to the near-future circular economy. Today, most hydrogen is still produced from fossil fuels or renewable pathways with low efficiency and high cost. Herein, a proof of concept for a novel hydrogen production process is proposed, here named cyan hydrogen, inspired by a combination of the green and blue processes, due to the key role played by water and the low carbon content in the gas phase, respectively. The developed novel process, recently patented and demonstrated at the lab scale, is based on successive steps in which ethanol (5.0 mL) and water (10.0 mL) are alternately fed, with a fixed initial amount of sodium metaborate (2.0 g), in a batch reactor at 300 °C. Preliminary results showed the simultaneous production of a 95% v/v hydrogen stream, a polymeric byproduct with a repetitive carbon pattern -CH2-CH2-, and a liquid phase rich in oxygenated chemicals at temperatures lower than conventional hydrogen production processes.

6.
Int J Biol Macromol ; 263(Pt 1): 130210, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38365144

ABSTRACT

Sustainable active food packaging is essential to reduce the use of plastics, preserve food quality and minimize the environmental impact. Humic substances (HS) are rich in redox-active compounds, such as quinones, phenols, carboxyl, and hydroxyl moieties, making them functional additives for biopolymeric matrices, such as poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). Herein, composites made by incorporating different amounts of HS into PHBV were developed using the electrospinning technology and converted into homogeneous and continuous films by a thermal post-treatment to obtain a bioactive and biodegradable layer which could be part of a multilayer food packaging solution. The morphology, thermal, optical, mechanical, antioxidant and barrier properties of the resulting PHBV-based films have been evaluated, as well as the antifungal activity against Aspergillus flavus and Candida albicans and the antimicrobial properties against both Gram (+) and Gram (-) bacterial strains. HS show great potential as natural additives for biopolymer matrices, since they confer antioxidant, antimicrobial, and antifungal properties to the resulting materials. In addition, barrier, optical and mechanical properties highlighted that the obtained films are suitable for sustainable active packaging. Therefore, the electrospinning methodology is a promising and sustainable approach to give biowaste a new life through the development of multifunctional materials suitable in the active bio-packaging.


Subject(s)
Food Packaging , Humic Substances , Pentanoic Acids , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Polyesters
7.
Colloids Surf B Biointerfaces ; 235: 113756, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278033

ABSTRACT

Melanin is a multifunctional biological pigment that recently emerged as endowed with anti-inflammatory, antioxidant, and antimicrobial properties and with high potentialities in skin protection and regenerative medicine. Here, a biomimetic magnesium-doped nano-hydroxyapatite (MgHA) was synthesized and decorated with melanin molecules starting from two different monomeric precursors, i.e. 5,6-dihydroxyindole-2-carboxylic acid (DHICA) and dopamine (DA), demonstrating to be able to polymerize on the surface of MgHA nanostructures, thus leading to a melanin coating. This functionalization was realized by a simple and green preparation method requiring mild conditions in an aqueous medium and room temperature. Complementary spectroscopy and electron imaging analyses were carried out to define the effective formation of a stable coating, the percentage of the organic compounds, and the structural properties of resulting melanin-coated nanostructures, which showed good antioxidant activity. The in vitro interaction with a cell model, i.e. mouse fibroblasts, was investigated. The excellent biocompatibility of all bioinspired nanostructures was confirmed from a suitable cell proliferation. Finally, the enhanced biological performances of the nanostructures coated with melanin from DHICA were confirmed by scratch assays. Jointly our findings indicated that low crystalline MgHA and melanin pigments can be efficiently combined, and the resulting nanostructures are promising candidates as multifunctional platforms for a more efficient approach for skin regeneration and protection.


Subject(s)
Indoles , Melanins , Animals , Mice , Melanins/chemistry , Indoles/pharmacology , Indoles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Wound Healing , Hydroxyapatites , Regeneration
8.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139203

ABSTRACT

Bioinspired nanoparticles have recently been gaining attention as promising multifunctional nanoplatforms for therapeutic applications in cancer, including breast cancer. Here, the efficiency of the chemo-photothermal and photoacoustic properties of hybrid albumin-modified nanoparticles (HSA-NPs) loaded with doxorubicin was evaluated in a three-dimensional breast cancer cell model. The HSA-NPs showed a higher uptake and deeper penetration into breast cancer spheroids than healthy breast cell 3D cultures. Confocal microscopy revealed that, in tumour spheroids incubated with doxorubicin-loaded NPs for 16 h, doxorubicin was mainly localised in the cytoplasm, while a strong signal was detectable at the nuclear level after 24 h, suggesting a time-dependent uptake. To evaluate the cytotoxicity of doxorubicin-loaded NPs, tumour spheroids were treated for up to 96 h with increasing concentrations of NPs, showing marked toxicity only at the highest concentration of doxorubicin. When doxorubicin administration was combined with laser photothermal irradiation, enhanced cytotoxicity was observed at lower concentrations and incubation times. Finally, the photoacoustic properties of doxorubicin-loaded NPs were evaluated in tumour spheroids, showing a detectable signal increasing with NP concentration. Overall, our data show that the combined effect of chemo-photothermal therapy results in a shorter exposure time to doxorubicin and a lower drug dose. Furthermore, owing to the photoacoustic properties of the NPs, this nanoplatform may represent a good candidate for theranostic applications.


Subject(s)
Breast Neoplasms , Hyperthermia, Induced , Nanoparticles , Photoacoustic Techniques , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/therapy , Photothermal Therapy , Photoacoustic Techniques/methods , Doxorubicin/pharmacology , Phototherapy/methods , Cell Line, Tumor , Hyperthermia, Induced/methods
9.
Chemosphere ; 344: 140430, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37832885

ABSTRACT

Humic acids (HA) consist in a multitude of heterogeneous organic molecules surviving the biological and chemical degradation of both vegetal and animal biomasses. The great abundance and chemical richness of these residues make their valorisation one of the most promising approaches to move towards a circular economy. However, the heterogeneity of the biomass from which HA are extracted, as well as the production process, significantly affects the nature and the relative content of functional groups (i.e. quinones, phenols and carboxylic and hydroxyl moieties), eventually changing HA reactivity and ultimately determining their application field. Indeed, depending on their properties, these substances can be used as flame retardants in the case of pronounced resilience degree (i.e., absent or low reactivity), or as antioxidant or antimicrobial agents in the case of pronounced reactivity, thanks to their redox behaviour. In this work we investigated the flammable, the thermal and the physico-chemical features of HA extracted from different composted biomasses to identify the reactivity or the resiliency of these moieties. Several techniques, including flammability characterization (LIT and MIE), laser diffraction granulometry, TG, XRD analyses, FTIR spectroscopy on both solid and gaseous phases, and Raman spectroscopy were integrated to investigate the correlation among the safety parameters, the distributions of particle sizes, as well as the thermal, the chemical properties of HA powders and the influence of post-extraction processes on HA final properties.


Subject(s)
Environmental Restoration and Remediation , Humic Substances , Humic Substances/analysis , Soil/chemistry , Phenols/analysis , Spectroscopy, Fourier Transform Infrared/methods
10.
ACS Appl Mater Interfaces ; 15(40): 46756-46764, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37774145

ABSTRACT

Photoacoustics (PA) is gaining increasing credit among biomolecular imaging methodologies by virtue of its poor invasiveness, deep penetration, high spatial resolution, and excellent endogenous contrast, without the use of any ionizing radiation. Recently, we disclosed the excellent PA response of a self-structured biocompatible nanoprobe, consisting of ternary hybrid nanoparticles with a silver core and a melanin component embedded into a silica matrix. Although preliminary evidence suggested a crucial role of the Ag sonophore and the melanin-containing nanoenvironment, whether and in what manner the PA response is controlled and affected by the self-structured hybrid nanosystems remained unclear. Because of their potential as multifunctional platforms for biomedical applications, a detailed investigation of the metal-polymer-matrix interplay underlying the PA response was undertaken to understand the physical and chemical factors determining the enhanced response and to optimize the architecture, composition, and performance of the nanoparticles for efficient imaging applications. Herein, we provide the evidence for a strong synergistic interaction between eumelanin and Ag which suggests an important role in the in situ-generated metal-organic interface. In particular, we show that a strict ratio between melanin and silver precursors and an accurate choice of metal nanoparticle dimension and the kind of metal are essential for achieving strong enhancements of the PA response. Systematic variation of the metal/melanin component is thus shown to offer the means of tuning the stability and intensity of the photoacoustic response for various biomedical and theranostic applications.


Subject(s)
Metal Nanoparticles , Nanoparticles , Photoacoustic Techniques , Melanins/chemistry , Silver/chemistry , Silicon Dioxide , Nanoparticles/chemistry , Metal Nanoparticles/chemistry , Polymers , Photoacoustic Techniques/methods
11.
Biomater Adv ; 153: 213558, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37467646

ABSTRACT

Redox-active nano-biointerfaces are gaining weight in the field of regenerative medicine since they can act as enzymes in regulating physiological processes and enabling cell homeostasis, as well as the defense against pathogen aggression. In particular, cerium oxide nanoparticles (CeO2 NPs) stand as intriguing enzyme-mimicking nanoplatforms, owing to the reversible Ce+3/Ce+4 surface oxidation state. Moreover, surface functionalization leads to higher catalytic activity and selectivity, as well as more tunable enzyme-mimicking performances. Conjugation with melanin is an adequate strategy to boost and enrich CeO2 NPs biological features, because of melanin redox properties accounting for intrinsic antioxidant, antimicrobial and anti-inflammatory power. Herein, hybrid Melanin/CeO2 nanostructures were designed by simply coating the metal-oxide nanoparticles with melanin chains, obtained in-situ through ligand-to-metal charge transfer mechanism, according to a bioinspired approach. Obtained hybrid nanostructures underwent detailed physico-chemical characterization. Morphological and textural features were investigated through TEM, XRD and N2 physisorption. The nature of nanoparticle-melanin interaction was analyzed through FTIR, UV-vis and EPR spectroscopy. Melanin-coated hybrid nanostructures exhibited a relevant antioxidant activity, confirmed by a powerful quenching effect for DPPH radical, reaching 81 % inhibition at 33 µg/mL. A promising anti-inflammatory efficacy of the melanin-coated hybrid nanostructures was validated through a significant inhibition of BSA denaturation after 3 h. Meanwhile, the enzyme-mimicking activity was corroborated by a prolonged peroxidase activity after 8 h at 100 µg/mL and a relevant catalase-like action, by halving the H2O2 level in 30 min at 50 µg/mL. Antimicrobial assays attested that conjugation with melanin dramatically boosted CeO2 biocide activity against both Gram (-) and Gram (+) strains. Cytocompatibility tests demonstrated that the melanin coating not only enhanced the CeO2 nanostructures biomimicry, resulting in improved cell viability for human dermal fibroblast cells (HDFs), but mostly they proved that Melanin-CeO2 NPs were able to control the oxidative stress, modulating the production of nitrite and reactive oxygen species (ROS) levels in HDFs, under physiological conditions. Such remarkable outcomes make hybrid melanin-CeO2 nanozymes, promising redox-active interfaces for regenerative medicine.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanostructures , Humans , Melanins/pharmacology , Hydrogen Peroxide , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Metal Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Homeostasis
12.
Polymers (Basel) ; 15(14)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37514377

ABSTRACT

This review focuses on the opportunities provided by sol-gel chemistry for the production of silica/epoxy nanocomposites, with significant representative examples of the "extra situ" approach and an updated description of the "in situ" strategy. The "extra situ" strategy enables the creation of nanocomposites containing highly engineered nanoparticles. The "in situ" approach is a very promising synthesis route that allows us to produce, in a much easier and eco-friendly manner, properly flame-retarded silica/epoxy nanocomposites endowed with very interesting properties. The review highlights the recently proposed mechanism of nanoparticles formation, which is expected to help to design the synthesis strategies of nanocomposites, changing their composition (both for the nanoparticle and matrix nature) and with in situ-generated nanoparticles possibly more complex than the ones obtained, until today, through this route.

13.
Biomacromolecules ; 24(6): 2691-2705, 2023 06 12.
Article in English | MEDLINE | ID: mdl-37167573

ABSTRACT

Exploring opportunities for biowaste valorization, herein, humic substances (HS) were combined with gelatin, a hydrophilic biocompatible and bioavailable polymer, to obtain 3D hydrogels. Hybrid gels (Gel HS) were prepared at different HS contents, exploiting physical or chemical cross-linking, through 1-ethyl-(3-3-dimethylaminopropyl)carbodiimide (EDC) chemistry, between HS and gelatin. Physicochemical features were assessed through rheological measurements, X-ray diffraction, attenuated total reflectance (ATR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and scanning electron microscopy (SEM). ATR and NMR spectroscopies suggested the formation of an amide bond between HS and Gel via EDC chemistry. In addition, antioxidant and antimicrobial features toward both Gram(-) and Gram(+) strains were evaluated. HS confers great antioxidant and widespread antibiotic performance to the whole gel. Furthermore, the chemical cross-linking affects the viscoelastic behavior, crystalline structures, water uptake, and functional performance and produces a marked improvement of biocide action.


Subject(s)
Gelatin , Hydrogels , Gelatin/chemistry , Hydrogels/pharmacology , Hydrogels/chemistry , Humic Substances , Antioxidants/pharmacology , Cross-Linking Reagents/chemistry , Anti-Bacterial Agents/pharmacology
14.
Nanomaterials (Basel) ; 13(7)2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37049262

ABSTRACT

Stimulated Raman scattering in transparent glass-ceramics (TGCs) based on bulk nucleating phase Ba2NaNb5O15 were investigated with the aim to explore the influence of micro- and nanoscale structural transformations on Raman gain. Nanostructured TGCs were synthesized, starting with 8BaO·15Na2O·27Nb2O5·50SiO2 (BaNaNS) glass, by proper nucleation and crystallization heat treatments. TGCs are composed of nanocrystals that are 10-15 nm in size, uniformly distributed in the residual glass matrix, with a crystallinity degree ranging from 30 up to 50% for samples subjected to different heat treatments. A significant Raman gain improvement for both BaNaNS glass and TGCs with respect to SiO2 glass is demonstrated, which can be clearly related to the nanostructuring process. These findings show that the nonlinear optical functionalities of TGC materials can be modulated by controlling the structural transformations at the nanoscale rather than microscale.

15.
Microorganisms ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36985196

ABSTRACT

Microbial colonization of surfaces is a sanitary and industrial issue for many applications, leading to product contamination and human infections. When microorganisms closely interact with a surface, they start to produce an exo-polysaccaridic matrix to adhere to and protect themselves from adverse environmental conditions. This type of structure is called a biofilm. The aim of our work is to investigate novel technologies able to prevent biofilm formation by surface coatings. We coated glass surfaces with melanin-ZnO2, melanin-TiO2, and TiO2 hybrid nanoparticles. The functionalization was performed using cold plasma to activate glass-substrate-coated surfaces, that were characterized by performing water and soybean oil wetting tests. A quantitative characterization of the antibiofilm properties was done using Pseudomonas fluorescens AR 11 as a model organism. Biofilm morphologies were observed using confocal laser scanning microscopy and image analysis techniques were used to obtain quantitative morphological parameters. The results highlight the efficacy of the proposed surface coating to prevent biofilm formation. Melanin-TiO2 proved to be the most efficient among the particles investigated. Our results can be a valuable support for future implementation of the technique proposed here in an extended range of applications that may include further testing on other strains and other support materials.

16.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36768327

ABSTRACT

The existing literature survey reports rare and conflicting studies on the effect of the preparation method of metal-based semiconductor photocatalysts on structural/morphological features, electronic properties, and kinetics regulating the photocatalytic H2 generation reaction. In this investigation, we compare the different copper/titania-based photocatalysts for H2 generation synthesized via distinct methods (i.e., photodeposition and impregnation). Our study aims to establish a stringent correlation between physicochemical/electronic properties and photocatalytic performances for H2 generation based on material characterization and kinetic modeling of the experimental outcomes. Estimating unknown kinetic parameters, such as charge recombination rate and quantum yield, suggests a mechanism regulating charge carrier lifetime depending on copper distribution on the TiO2 surface. We demonstrate that H2 generation photoefficiency recorded over impregnated CuxOy/TiO2 is related to an even distribution of Cu(0)/Cu(I) on TiO2, and the formation of an Ohmic junction concertedly extended charge carrier lifetime and separation. The outcomes of the kinetic analysis and the related modeling investigation underpin photocatalyst physicochemical and electronic properties. Overall, the present study lays the groundwork for the future design of metal-based semiconductor photocatalysts with high photoefficiencies for H2 evolution.

17.
FEMS Microbiol Ecol ; 99(2)2023 01 24.
Article in English | MEDLINE | ID: mdl-36478021

ABSTRACT

Polyethylene (PE) is high molecular weight synthetic polymer, very hydrofobic and hardly biodegradable. To increase polyethylene bio-degradability it is very important to find microorganisms that improve the PE hydrophilic level and/or reduce the length of its polymeric chain by oxidation. In this study, we isolated Cladosporium halotolerans, a fungal species, from the gastric system of Galleria mellonella larvae. Here, we show that C. halotolerans grows in the presence of PE polymer, it is able to interact with plastic material through its hyphae and secretes enzymes involved in PE degradation.


Subject(s)
Plastics , Polyethylene , Animals , Polyethylene/metabolism , Cladosporium/metabolism , Polymers , Biodegradation, Environmental
18.
Polymers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080642

ABSTRACT

Heparin plays multiple biological roles depending on the availability of active sites strongly influenced by the conformation and the structure of polysaccharide chains. Combining different components at the molecular scale offers an extraordinary chance to easily tune the structural organization of heparin required for exploring new potential applications. In fact, the combination of different material types leads to challenges that cannot be achieved by each single component. In this study, hybrid heparin/silica nanoparticles were synthesized, and the role of silica as a templating agent for heparin supramolecular organization was investigated. The effect of synthesis parameters on particles compositions was deeply investigated by Fourier Transform Infrared Spectroscopy (FTIR) and Thermogravimetric Analysis (TGA). Transmission Electron Microscopy (TEM) reveals a different supramolecular organization of both components, leading to amazing organic-inorganic nanoparticles with different behavior in drug encapsulation and release. Furthermore, favorable biocompatibility for healthy human dermal fibroblasts (HDF) and tumor HS578T cells has been assessed, and a different biological behavior was observed, ascribed to different surface charge and morphology of synthesized nanoparticles.

19.
RSC Adv ; 12(23): 14645-14654, 2022 May 12.
Article in English | MEDLINE | ID: mdl-35702191

ABSTRACT

CeO2 slow redox kinetics as well as low oxygen exchange ability limit its application as a catalyst in solar thermochemical two-step cycles. In this study, Ce0.75Zr0.25O2 catalysts doped with potassium or transition metals (Cu, Mn, Fe), as well as co-doped materials were synthesized. Samples were investigated by X-ray diffraction (XRD), N2 sorption (BET), as well as by electron paramagnetic resonance (EPR) and X-ray photoelectron spectroscopy (XPS) to gain insight into surface and bulk features, which were connected to redox properties assessed both in a thermogravimetric (TG) balance and in a fixed bed reactor. Obtained results revealed that doping as well as co-doping with non-reducible K cations promoted the increase of both surface and bulk oxygen vacancies. Accordingly, K-doped and Fe-K co-doped materials show the best redox performances evidencing the highest reduction degree, the largest H2 amounts and the fastest kinetics, thus emerging as very interesting materials for solar thermochemical splitting cycles.

20.
Chemosphere ; 287(Pt 1): 131985, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34454229

ABSTRACT

Humic acids (HA) are considered a promising and inexpensive source for novel multifunctional materials for a huge range of applications. However, aggregation and degradation phenomena in aqueous environment prevent from their full exploitation. A valid strategy to address these issues relies on combining HA moieties at the molecular scale with an inorganic nanostructured component, leading to more stable hybrid nanomaterials with tunable functionalities. Indeed, chemical composition of HA can determine their interactions with the inorganic constituent in the hybrid nanoparticles and consequently affect their overall physico-chemical properties, including their stability and functional properties in aqueous environment. As a fundamental contribution to HA materials-based technology, this study aims at unveiling this aspect. To this purpose, SiO2 nanoparticles have been chosen as a model platform and three different HAs extracted from composted biomasses, manure (HA_Man), artichoke residues (HA_Art) and coffee grounds (HA_Cof), were employed to synthetize hybrid HA-SiO2 nanoparticles through in-situ sol-gel synthesis. Prepared samples were submitted to aging in water to assess their stability. Furthermore, antioxidant properties and physico-chemical properties of both as prepared and aged samples in aqueous environment were assessed through Scanning Electron Microscopy (SEM), N2 physisorption, Simultaneous Thermogravimetric (TGA) and Differential Scanning Calorimetric (DSC) Analysis, Fourier Transform Infrared (FT-IR), Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR) spectroscopies. The experimental results highlighted that hybrid HA-SiO2 nanostructures acted as dynamic systems which exhibit structural supramolecular reorganization during aging in aqueous environment with marked effects on physico-chemical and functional properties, including improved antioxidant activity. Obtained results enlighten a unique aspect of interactions between HA and inorganic nanoparticles that could be useful to predict their behavior in aqueous environment. Furthermore, the proposed approach traces a technological route for the exploitation of organic biowaste in the design of hybrid nanomaterials, providing a significant contribution to the development of waste to wealth strategies based on humic substances.


Subject(s)
Humic Substances , Nanostructures , Aged , Humans , Humic Substances/analysis , Male , Silicon Dioxide , Spectroscopy, Fourier Transform Infrared , Water
SELECTION OF CITATIONS
SEARCH DETAIL