Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028036

ABSTRACT

Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.


Subject(s)
Aging , Macaca mulatta , Memory, Short-Term , Myelin Sheath , Prefrontal Cortex , Memory, Short-Term/physiology , Animals , Myelin Sheath/physiology , Aging/physiology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/physiology , Models, Neurological , Demyelinating Diseases/physiopathology , Demyelinating Diseases/pathology , Action Potentials/physiology , Dorsolateral Prefrontal Cortex
2.
Brain Struct Funct ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943018

ABSTRACT

In this novel large-scale multiplexed immunofluorescence study we comprehensively characterized and compared layer-specific proteomic features within regions of interest of the widely divergent dorsolateral prefrontal cortex (A46) and primary visual cortex (A17) of adult rhesus monkeys. Twenty-eight markers were imaged in rounds of sequential staining, and their spatial distribution precisely quantified within gray matter layers and superficial white matter. Cells were classified as neurons, astrocytes, oligodendrocytes, microglia, or endothelial cells. The distribution of fibers and blood vessels were assessed by quantification of staining intensity across regions of interest. This method revealed multivariate similarities and differences between layers and areas. Protein expression in neurons was the strongest determinant of both laminar and regional differences, whereas protein expression in glia was more important for intra-areal laminar distinctions. Among specific results, we observed a lower glia-to-neuron ratio in A17 than in A46 and the pan-neuronal markers HuD and NeuN were differentially distributed in both brain areas with a lower intensity of NeuN in layers 4 and 5 of A17 compared to A46 and other A17 layers. Astrocytes and oligodendrocytes exhibited distinct marker-specific laminar distributions that differed between regions; notably, there was a high proportion of ALDH1L1-expressing astrocytes and of oligodendrocyte markers in layer 4 of A17. The many nuanced differences in protein expression between layers and regions observed here highlight the need for direct assessment of proteins, in addition to RNA expression, and set the stage for future protein-focused studies of these and other brain regions in normal and pathological conditions.

3.
Hippocampus ; 34(2): 52-57, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38189522

ABSTRACT

The famous amnesic patient Henry Molaison (H.M.) died on December 2, 2008. After extensive in situ magnetic resonance imaging in Boston, his brain was removed at autopsy and transported to the University of California San Diego. There the brain was prepared for frozen sectioning and cut into 2401, 70 µm coronal slices. While preliminary analyses of the brain sections have been reported, a comprehensive microscopic neuroanatomical analysis of the state of H.M.'s brain at the time of his death has not yet been published. The brain tissue and slides were subsequently moved to the University of California Davis and the slides digitized at high resolution. Initial stages of producing a website for the public viewing of the images were also carried out. Recently, the slides, digital images, and tissue have been transferred to Boston University for permanent archiving. A new steering committee has been established and plans are in place for completion of a freely accessible H.M. website. Research publications on the microscopic anatomy and neuropathology of H.M.'s brain at the time of his death are also planned. We write this commentary to provide the hippocampus and memory neuroscience communities with a brief summary of what has transpired following H.M.'s death and outline plans for future publications and a tissue archive.


Subject(s)
Brain , Hippocampus , Humans , Brain/diagnostic imaging , Brain/pathology , Magnetic Resonance Imaging
4.
Front Aging Neurosci ; 15: 1249415, 2023.
Article in English | MEDLINE | ID: mdl-38020785

ABSTRACT

The application of artificial intelligence (AI) to summarize a whole-brain magnetic resonance image (MRI) into an effective "brain age" metric can provide a holistic, individualized, and objective view of how the brain interacts with various factors (e.g., genetics and lifestyle) during aging. Brain age predictions using deep learning (DL) have been widely used to quantify the developmental status of human brains, but their wider application to serve biomedical purposes is under criticism for requiring large samples and complicated interpretability. Animal models, i.e., rhesus monkeys, have offered a unique lens to understand the human brain - being a species in which aging patterns are similar, for which environmental and lifestyle factors are more readily controlled. However, applying DL methods in animal models suffers from data insufficiency as the availability of animal brain MRIs is limited compared to many thousands of human MRIs. We showed that transfer learning can mitigate the sample size problem, where transferring the pre-trained AI models from 8,859 human brain MRIs improved monkey brain age estimation accuracy and stability. The highest accuracy and stability occurred when transferring the 3D ResNet [mean absolute error (MAE) = 1.83 years] and the 2D global-local transformer (MAE = 1.92 years) models. Our models identified the frontal white matter as the most important feature for monkey brain age predictions, which is consistent with previous histological findings. This first DL-based, anatomically interpretable, and adaptive brain age estimator could broaden the application of AI techniques to various animal or disease samples and widen opportunities for research in non-human primate brains across the lifespan.

5.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693412

ABSTRACT

Normal aging leads to myelin alternations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are often correlated with cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First we built a multicompartment pyramidal neuron model fit to monkey dlPFC data, with axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions, to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination in a population of neurons. Lasso regression identified distinctive parameter sets likely to modulate an axon's susceptibility to CV changes following demyelination versus remyelination. Next we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from electron microscopy up to behavior on aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.

6.
J Comp Neurol ; 531(18): 1934-1962, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37357562

ABSTRACT

Fundamental differences in excitatory pyramidal cells across cortical areas and species highlight the implausibility of extrapolation from mouse to primate neurons and cortical networks. Far less is known about comparative regional and species-specific features of neurochemically distinct cortical inhibitory interneurons. Here, we quantified the density, laminar distribution, and somatodendritic morphology of inhibitory interneurons expressing one or more of the calcium-binding proteins (CaBPs) (calretinin [CR], calbindin [CB], and/or parvalbumin [PV]) in mouse (Mus musculus) versus rhesus monkey (Macaca mulatta) in two functionally and cytoarchitectonically distinct regions-the primary visual and frontal cortical areas-using immunofluorescent multilabeling, stereological counting, and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP coexpression in monkey compared to mouse cortices. Cluster analyses revealed that the somatodendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells that show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species- and area-specific functional capacities.


Subject(s)
Parvalbumins , S100 Calcium Binding Protein G , Animals , Mice , Calbindins/metabolism , Calbindin 2/metabolism , Parvalbumins/metabolism , S100 Calcium Binding Protein G/analysis , S100 Calcium Binding Protein G/metabolism , Prefrontal Cortex , Interneurons/metabolism , Frontal Lobe , Macaca mulatta
7.
Geroscience ; 45(3): 1317-1342, 2023 06.
Article in English | MEDLINE | ID: mdl-37106282

ABSTRACT

Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age, and these impairments correlate with changes in biophysical properties of layer 3 (L3) pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of L3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.


Subject(s)
Memory, Short-Term , Neurons , Animals , Aging , Macaca mulatta , Memory, Short-Term/physiology , Prefrontal Cortex , Pyramidal Cells/physiology
8.
bioRxiv ; 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36909556

ABSTRACT

Much is known about differences in pyramidal cells across cortical areas and species, but studies of interneurons have focused on comparisons within single cortical areas and/or species. Here we quantified the distribution and somato-dendritic morphology of interneurons expressing one or more of the calcium binding proteins (CaBPs) calretinin (CR), calbindin (CB) and/or parvalbumin (PV) in mouse ( Mus musculus ) versus rhesus monkey ( Macaca mulatta ) in two functionally and cytoarchitectonically distinct regions- the primary visual and frontal cortical areas. The density, laminar distribution and morphology of interneurons were assessed in serial brain sections using immunofluorescent multi-labeling, stereological counting and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP co-expression in monkey compared to mouse cortices. Cluster analyses revealed that the somato-dendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells which show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species and area-specific functional capacities. Key Points: Somato-dendritic morphology of distinct interneurons did not substantially scale and vary across areas and species- differences were mainly dependent on CaBP expression.Cortical diversity in inhibitory function across areas and species is thus likely to be derived from differential laminar distribution and densities of distinct interneuron subclasses.In contrast to pyramidal cells which differ widely in distribution and morphology across areas and species, the features of interneurons appears to be relatively more conserved across areas and species.

9.
bioRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36798388

ABSTRACT

Age-related declines in cognitive abilities occur as early as middle-age in humans and rhesus monkeys. Specifically, performance by aged individuals on tasks of executive function (EF) and working memory (WM) is characterized by greater frequency of errors, shorter memory spans, increased frequency of perseverative responses, impaired use of feedback and reduced speed of processing. However, how aging precisely differentially impacts specific aspects of these cognitive functions and the distinct brain areas mediating cognition are not well understood. The prefrontal cortex (PFC) is known to mediate EF and WM and is an area that shows a vulnerability to age-related alterations in neuronal morphology. In the current study, we show that performance on EF and WM tasks exhibited significant changes with age and these impairments correlate with changes in biophysical properties of L3 pyramidal neurons in lateral LPFC (LPFC). Specifically, there was a significant age-related increase in excitability of Layer 3 LPFC pyramidal neurons, consistent with previous studies. Further, this age-related hyperexcitability of LPFC neurons was significantly correlated with age-related decline on a task of WM, but not an EF task. The current study characterizes age-related performance on tasks of WM and EF and provides insight into the neural substrates that may underlie changes in both WM and EF with age.

10.
Cereb Cortex ; 32(10): 2170-2196, 2022 05 14.
Article in English | MEDLINE | ID: mdl-34613380

ABSTRACT

The laminar cellular and circuit mechanisms by which the anterior cingulate cortex (ACC) exerts flexible control of motor and affective information for goal-directed behavior have not been elucidated. Using multimodal tract-tracing, in vitro patch-clamp recording and computational approaches in rhesus monkeys (M. mulatta), we provide evidence that specialized motor and affective network dynamics can be conferred by layer-specific biophysical and structural properties of ACC pyramidal neurons targeting two key downstream structures -the dorsal premotor cortex (PMd) and the amygdala (AMY). AMY-targeting neurons exhibited significant laminar differences, with L5 more excitable (higher input resistance and action potential firing rates) than L3 neurons. Between-pathway differences were found within L5, with AMY-targeting neurons exhibiting greater excitability, apical dendritic complexity, spine densities, and diversity of inhibitory inputs than PMd-targeting neurons. Simulations using a pyramidal-interneuron network model predict that these layer- and pathway-specific single-cell differences contribute to distinct network oscillatory dynamics. L5 AMY-targeting networks are more tuned to slow oscillations well-suited for affective and contextual processing timescales, while PMd-targeting networks showed strong beta/gamma synchrony implicated in rapid sensorimotor processing. These findings are fundamental to our broad understanding of how layer-specific cellular and circuit properties can drive diverse laminar activity found in flexible behavior.


Subject(s)
Gyrus Cinguli , Prefrontal Cortex , Action Potentials/physiology , Dendrites , Gyrus Cinguli/physiology , Prefrontal Cortex/physiology , Pyramidal Cells/physiology
11.
Sci Transl Med ; 13(611): eabe8455, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34524859

ABSTRACT

Abnormally phosphorylated tau, an early neuropathologic marker of Alzheimer's disease (AD), first occurs in the brain's entorhinal cortex layer II (ECII) and then spreads to the CA1 field of the hippocampus. Animal models of tau propagation aiming to recapitulate this phenomenon mostly show tau transfer from ECII stellate neurons to the dentate gyrus, but tau pathology in the dentate gyrus does not appear until advanced stages of AD. Wolframin-1­expressing (Wfs1+) pyramidal neurons have been shown functionally to modulate hippocampal CA1 neurons in mice. Here, we report that Wfs1+ pyramidal neurons are conserved in the ECII of postmortem human brain tissue and that Wfs1 colocalized with abnormally phosphorylated tau in brains from individuals with early AD. Wfs1+ neuron­specific expression of human P301L mutant tau in mouse ECII resulted in transfer of tau to hippocampal CA1 pyramidal neurons, suggesting spread of tau pathology as observed in the early Braak stages of AD. In mice expressing human mutant tau specifically in the ECII brain region, electrophysiological recordings of CA1 pyramidal neurons showed reduced excitability. Multielectrode array recordings of optogenetically stimulated Wfs1+ ECII axons resulted in reduced CA1 neuronal firing. Chemogenetic activation of CA1 pyramidal neurons showed a reduction in c-fos+ cells in the CA1. Last, a fear conditioning task revealed deficits in trace and contextual memory in mice overexpressing human mutant tau in the ECII. This work demonstrates tau transfer from the ECII to CA1 in mouse brain and provides an early Braak stage preclinical model of AD.


Subject(s)
Entorhinal Cortex , Hippocampus , Animals , Mice , Neurons
12.
Am J Primatol ; 83(11): e23299, 2021 11.
Article in English | MEDLINE | ID: mdl-34255875

ABSTRACT

While humans exhibit a significant degree of neuropathological changes associated with deficits in cognitive and memory functions during aging, non-human primates (NHP) present with more variable expressions of pathological alterations among individuals and species. As such, NHP with long life expectancy in captivity offer an opportunity to study brain senescence in the absence of the typical cellular pathology caused by age-related neurodegenerative illnesses commonly seen in humans. Age-related changes at neuronal population, single cell, and synaptic levels have been well documented in macaques and marmosets, while age-related and Alzheimer's disease-like neuropathology has been characterized in additional species including lemurs as well as great apes. We present a comparative overview of existing neuropathologic observations across the primate order, including classic age-related changes such as cell loss, amyloid deposition, amyloid angiopathy, and tau accumulation. We also review existing cellular and ultrastructural data on neuronal changes, such as dendritic attrition and spine alterations, synaptic loss and pathology, and axonal and myelin pathology, and discuss their repercussions on cellular and systems function and cognition.


Subject(s)
Aging , Brain/pathology , Primates , Alzheimer Disease , Animals , Cerebral Amyloid Angiopathy
13.
Mol Psychiatry ; 26(6): 1808-1831, 2021 06.
Article in English | MEDLINE | ID: mdl-32071385

ABSTRACT

Maternal immune activation (MIA) disrupts the central innate immune system during a critical neurodevelopmental period. Microglia are primary innate immune cells in the brain although their direct influence on the MIA phenotype is largely unknown. Here we show that MIA alters microglial gene expression with upregulation of cellular protrusion/neuritogenic pathways, concurrently causing repetitive behavior, social deficits, and synaptic dysfunction to layer V intrinsically bursting pyramidal neurons in the prefrontal cortex of mice. MIA increases plastic dendritic spines of the intrinsically bursting neurons and their interaction with hyper-ramified microglia. Treating MIA offspring by colony stimulating factor 1 receptor inhibitors induces depletion and repopulation of microglia, and corrects protein expression of the newly identified MIA-associated neuritogenic molecules in microglia, which coalesces with correction of MIA-associated synaptic, neurophysiological, and behavioral abnormalities. Our study demonstrates that maternal immune insults perturb microglial phenotypes and influence neuronal functions throughout adulthood, and reveals a potent effect of colony stimulating factor 1 receptor inhibitors on the correction of MIA-associated microglial, synaptic, and neurobehavioral dysfunctions.


Subject(s)
Microglia , Prenatal Exposure Delayed Effects , Animals , Behavior, Animal , Brain , Disease Models, Animal , Female , Inflammation , Macrophage Colony-Stimulating Factor , Mice , Neurons , Pregnancy , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor
14.
Brain ; 144(1): 288-309, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33246331

ABSTRACT

Extracellular vesicles are highly transmissible and play critical roles in the propagation of tau pathology, although the underlying mechanism remains elusive. Here, for the first time, we comprehensively characterized the physicochemical structure and pathogenic function of human brain-derived extracellular vesicles isolated from Alzheimer's disease, prodromal Alzheimer's disease, and non-demented control cases. Alzheimer's disease extracellular vesicles were significantly enriched in epitope-specific tau oligomers in comparison to prodromal Alzheimer's disease or control extracellular vesicles as determined by dot blot and atomic force microscopy. Alzheimer's disease extracellular vesicles were more efficiently internalized by murine cortical neurons, as well as more efficient in transferring and misfolding tau, than prodromal Alzheimer's disease and control extracellular vesicles in vitro. Strikingly, the inoculation of Alzheimer's disease or prodromal Alzheimer's disease extracellular vesicles containing only 300 pg of tau into the outer molecular layer of the dentate gyrus of 18-month-old C57BL/6 mice resulted in the accumulation of abnormally phosphorylated tau throughout the hippocampus by 4.5 months, whereas inoculation of an equal amount of tau from control extracellular vesicles, isolated tau oligomers, or fibrils from the same Alzheimer's disease donor showed little tau pathology. Furthermore, Alzheimer's disease extracellular vesicles induced misfolding of endogenous tau in both oligomeric and sarkosyl-insoluble forms in the hippocampal region. Unexpectedly, phosphorylated tau was primarily accumulated in glutamic acid decarboxylase 67 (GAD67) GABAergic interneurons and, to a lesser extent, glutamate receptor 2/3-positive excitatory mossy cells, showing preferential extracellular vesicle-mediated GABAergic interneuronal tau propagation. Whole-cell patch clamp recordings of CA1 pyramidal cells showed significant reduction in the amplitude of spontaneous inhibitory post-synaptic currents. This was accompanied by reductions in c-fos+ GAD67+ neurons and GAD67+ neuronal puncta surrounding pyramidal neurons in the CA1 region, confirming reduced GABAergic transmission in this region. Our study posits a novel mechanism for the spread of tau in hippocampal GABAergic interneurons via brain-derived extracellular vesicles and their subsequent neuronal dysfunction.


Subject(s)
Alzheimer Disease/pathology , Brain/pathology , Extracellular Vesicles/metabolism , Interneurons/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Brain/metabolism , Extracellular Vesicles/pathology , Female , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans , Interneurons/pathology , Male , Mice, Inbred C57BL , Pyramidal Cells/metabolism , Pyramidal Cells/pathology
15.
PLoS One ; 15(6): e0234394, 2020.
Article in English | MEDLINE | ID: mdl-32574176

ABSTRACT

In the BACHD mouse model of Huntington's disease (HD), deletion of the N17 domain of the Huntingtin gene (BACHDΔN17, Q97) has been reported to lead to nuclear accumulation of mHTT and exacerbation of motor deficits, neuroinflammation and striatal atrophy (Gu et al., 2015). Here we characterized the effect of N17 deletion on dorsolateral striatal medium spiny neurons (MSNs) in BACHDΔN17 (Q97) and BACWTΔN17 (Q31) mice by comparing them to MSNs in wildtype (WT) mice. Mice were characterized on a series of motor tasks and subsequently whole cell patch clamp recordings with simultaneous biocytin filling of MSNs in in vitro striatal slices from these mice were used to comprehensively assess their physiological and morphological features. Key findings include that: Q97 mice exhibit impaired gait and righting reflexes but normal tail suspension reflexes and normal coats while Q31 mice do not differ from WT; intrinsic membrane and action potential properties are altered -but differentially so- in MSNs from Q97 and from Q31 mice; excitatory and inhibitory synaptic currents exhibit higher amplitudes in Q31 but not Q97 MSNs, while excitatory synaptic currents occur at lower frequency in Q97 than in WT and Q31 MSNs; there is a reduced total dendritic length in Q31 -but not Q97- MSNs compared to WT, while spine density and number did not differ in MSNs in the three groups. The findings that Q31 MSNs differed from Q97 and WT neurons with regard to some physiological features and structurally suggest a novel role of the N17 domain in the function of WT Htt. The motor phenotype seen in Q97 mice was less robust than that reported in an earlier study (Gu et al., 2015), and the alterations to MSN physiological properties were largely consistent with changes reported previously in a number of other mouse models of HD. Together this study indicates that N17 plays a role in the modulation of the properties of MSNs in both mHtt and WT-Htt mice, but does not markedly exacerbate HD-like pathogenesis in the BACHD model.


Subject(s)
Huntingtin Protein/genetics , Huntington Disease/genetics , Action Potentials , Animals , Corpus Striatum/pathology , Corpus Striatum/physiopathology , Dendrites/pathology , Disease Models, Animal , Excitatory Postsynaptic Potentials , Female , Humans , Huntingtin Protein/chemistry , Huntingtin Protein/physiology , Huntington Disease/pathology , Huntington Disease/physiopathology , Lameness, Animal/genetics , Lameness, Animal/physiopathology , Male , Mice , Mice, Mutant Strains , Mice, Transgenic , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/physiology , Neurons/pathology , Neurons/physiology , Protein Domains , Reflex, Abnormal/genetics , Reflex, Abnormal/physiology , Sequence Deletion
16.
Front Neurosci ; 14: 285, 2020.
Article in English | MEDLINE | ID: mdl-32327969

ABSTRACT

Neuroinflammatory processes play an integral role in the exacerbation and progression of pathology in tauopathies, a class of neurodegenerative disease characterized by aggregation of hyperphosphorylated tau protein. The RNA binding protein (RBP) T-cell Intracellular Antigen 1 (TIA1) is an important regulator of the innate immune response in the periphery, dampening cytotoxic inflammation and apoptosis during cellular stress, however, its role in neuroinflammation is unknown. We have recently shown that TIA1 regulates tau pathophysiology and toxicity in part through the binding of phospho-tau oligomers into pathological stress granules, and that haploinsufficiency of TIA1 in the P301S mouse model of tauopathy results in reduced accumulation of toxic tau oligomers, pathologic stress granules, and the development of downstream pathological features of tauopathy. The putative role of TIA1 as a regulator of the peripheral immune response led us to investigate the effects of TIA1 on neuroinflammation in the context of tauopathy, a chronic stressor in the neural environment. Here, we evaluated indicators of neuroinflammation including; reactive microgliosis and phagocytosis, pro-inflammatory cytokine release, and oxidative stress in hippocampal neurons and glia of wildtype and P301S transgenic mice expressing TIA1+/+, TIA1+/-, and TIA1-/- in both early (5 month) and advanced (9 month) disease states through biochemical, ultrastructural, and histological analyses. Our data show that both TIA1 haploinsufficiency and TIA1 knockout exacerbate neuroinflammatory processes in advanced stages of tauopathy, suggesting that TIA1 dampens the immune response in the central nervous system during chronic stress.

17.
Cereb Cortex ; 29(3): 1121-1138, 2019 03 01.
Article in English | MEDLINE | ID: mdl-29415216

ABSTRACT

How the variety of neurons that organize into neocortical layers and functional areas arises is a central question in the study of cortical development. While both intrinsic and extrinsic cues are known to influence this process, whether distinct neuronal progenitor groups contribute to neuron diversity and allocation is poorly understood. Using in vivo genetic fate-mapping combined with whole-cell patch clamp recording, we show that the firing pattern and apical dendritic morphology of excitatory neurons in layer 4 of the barrel cortex are specified in part by their neural precursor lineage. Further, we show that separate precursors contribute to unique features of barrel cortex topography including the intralaminar position and thalamic innervation of the neurons they generate. Importantly, many of these lineage-specified characteristics are different from those previously measured for pyramidal neurons in layers 2-3 of the frontal cortex. Collectively, our data elucidate a dynamic temporal program in neuronal precursors that fine-tunes the properties of their progeny according to the lamina of destination.


Subject(s)
Neural Stem Cells/physiology , Pyramidal Cells/physiology , Somatosensory Cortex/growth & development , Action Potentials , Animals , Dendritic Spines , Female , Male , Mice , Models, Neurological , Neocortex/cytology , Neocortex/growth & development , Pyramidal Cells/cytology , Somatosensory Cortex/cytology , T-Box Domain Proteins/metabolism
18.
Front Comput Neurosci ; 13: 89, 2019.
Article in English | MEDLINE | ID: mdl-32009920

ABSTRACT

Behavioral studies have shown spatial working memory impairment with aging in several animal species, including humans. Persistent activity of layer 3 pyramidal dorsolateral prefrontal cortex (dlPFC) neurons during delay periods of working memory tasks is important for encoding memory of the stimulus. In vitro studies have shown that these neurons undergo significant age-related structural and functional changes, but the extent to which these changes affect neural mechanisms underlying spatial working memory is not understood fully. Here, we confirm previous studies showing impairment on the Delayed Recognition Span Task in the spatial condition (DRSTsp), and increased in vitro action potential firing rates (hyperexcitability), across the adult life span of the rhesus monkey. We use a bump attractor model to predict how empirically observed changes in the aging dlPFC affect performance on the Delayed Response Task (DRT), and introduce a model of memory retention in the DRSTsp. Persistent activity-and, in turn, cognitive performance-in both models was affected much more by hyperexcitability of pyramidal neurons than by a loss of synapses. Our DRT simulations predict that additional changes to the network, such as increased firing of inhibitory interneurons, are needed to account for lower firing rates during the DRT with aging reported in vivo. Synaptic facilitation was an essential feature of the DRSTsp model, but it did not compensate fully for the effects of the other age-related changes on DRT performance. Modeling pyramidal neuron hyperexcitability and synapse loss simultaneously led to a partial recovery of function in both tasks, with the simulated level of DRSTsp impairment similar to that observed in aging monkeys. This modeling work integrates empirical data across multiple scales, from synapse counts to cognitive testing, to further our understanding of aging in non-human primates.

19.
PLoS One ; 13(8): e0200626, 2018.
Article in English | MEDLINE | ID: mdl-30118496

ABSTRACT

Huntington's Disease (HD) is an autosomal dominant, progressive neurodegenerative disorder caused by deleterious expansion of CAG repeats in the Huntingtin gene and production of neurotoxic mutant Huntingtin protein (mHTT). The key pathological feature of HD is a profound degeneration of the striatum and a loss of cortical volume. The initial loss of indirect pathway (D2) medium spiny neuron (MSN) projections in early stages of HD, followed by a loss of direct pathway (D1) projections in advanced stages has important implications for the trajectory of motor and cognitive dysfunction in HD, but is not yet understood. Mouse models of HD have yielded important information on the effects and mechanisms of mHTT toxicity; however, whether these models recapitulate differential vulnerability of D1 vs. D2 MSNs is unknown. Here, we employed 12-month-old Q175+/- x D2-eGFP mice to examine the detailed structural and functional properties of D1 vs. D2 MSNs. While both D1 and D2 MSNs exhibited increased input resistance, depolarized resting membrane potentials and action potential threshold, only D1 MSNs showed reduced rheobase, action potential amplitude and frequency of spontaneous excitatory postsynaptic currents. Furthermore, D1 but not D2 MSNs showed marked proliferative changes to their dendritic arbors and reductions in spine density. Immunohistochemical assessment showed no loss of glutamatergic afferent inputs from cortical and subcortical sources onto identified D1 and D2 MSNs. Computational models constrained by empirical data predict that the increased dendritic complexity in Q175+/- D1 MSNs likely leads to greater dendritic filtering and attenuation of signals propagating to the soma from the dendrites. Together these findings reveal that, by twelve months, D1 and D2 MSNs exhibit distinctive responses to the presence of mHTT in this important mouse model of HD. This further highlights the need to incorporate findings from D1 and D2 MSNs independently in the context of HD models.


Subject(s)
Dendritic Spines/pathology , Huntington Disease/pathology , Neurons/pathology , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Aging , Animals , Cells, Cultured , Dendritic Spines/metabolism , Disease Models, Animal , Female , Huntington Disease/metabolism , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism
20.
Nat Neurosci ; 21(1): 72-80, 2018 01.
Article in English | MEDLINE | ID: mdl-29273772

ABSTRACT

Emerging studies suggest a role for tau in regulating the biology of RNA binding proteins (RBPs). We now show that reducing the RBP T-cell intracellular antigen 1 (TIA1) in vivo protects against neurodegeneration and prolongs survival in transgenic P301S Tau mice. Biochemical fractionation shows co-enrichment and co-localization of tau oligomers and RBPs in transgenic P301S Tau mice. Reducing TIA1 decreased the number and size of granules co-localizing with stress granule markers. Decreasing TIA1 also inhibited the accumulation of tau oligomers at the expense of increasing neurofibrillary tangles. Despite the increase in neurofibrillary tangles, TIA1 reduction increased neuronal survival and rescued behavioral deficits and lifespan. These data provide in vivo evidence that TIA1 plays a key role in mediating toxicity and further suggest that RBPs direct the pathway of tau aggregation and the resulting neurodegeneration. We propose a model in which dysfunction of the translational stress response leads to tau-mediated pathology.


Subject(s)
Gene Expression Regulation/genetics , RNA-Binding Proteins/metabolism , Tauopathies/metabolism , Tauopathies/prevention & control , tau Proteins/metabolism , Animals , Animals, Newborn , Cognition Disorders/etiology , Cognition Disorders/genetics , Cytoplasm/metabolism , Cytoplasm/pathology , Cytoplasm/ultrastructure , Disease Models, Animal , Endoribonucleases/metabolism , Female , Locomotion/genetics , Male , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Neurofibrillary Tangles/metabolism , Neurofibrillary Tangles/pathology , Neurofibrillary Tangles/ultrastructure , Neurons/pathology , Neurons/ultrastructure , RNA-Binding Proteins/genetics , Synapses/metabolism , Synapses/ultrastructure , Tauopathies/genetics , Tauopathies/pathology , Trans-Activators/metabolism , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL