Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Trends Biotechnol ; 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39112274

ABSTRACT

Cellular, extracellular matrix (ECM), and spatial heterogeneity of tumor microenvironments (TMEs) regulate disease progression and treatment efficacy. Developing in vitro models that recapitulate the TME promises to accelerate studies of tumor biology and identify new targets for therapy. Here, we used extrusion-based, multi-nozzle 3D bioprinting to spatially pattern triple-negative MDA-MB-231 breast cancer cells, endothelial cells (ECs), and human mammary cancer-associated fibroblasts (HMCAFs) with biomimetic ECM inks. Bioprinted models captured key features of the spatial architecture of human breast tumors, including varying-sized dense regions of cancer cells and surrounding microvessel-rich stroma. Angiogenesis and ECM stiffening occurred in the stromal area but not the cancer cell-rich (CCR) regions, mimicking pathological changes in patient samples. Transcriptomic analyses revealed upregulation of angiogenesis-related and ECM remodeling-related signatures in the stroma region and identified potential ligand-receptor (LR) mediators of these processes. Breast cancer cells in distinct parts of the bioprinted TME showed differing sensitivities to chemotherapy, highlighting environmentally mediated drug resistance. In summary, our 3D-bioprinted tumor model will act as a platform to discover integrated functions of the TME in cancer biology and therapy.

2.
NPJ Syst Biol Appl ; 10(1): 42, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637530

ABSTRACT

Single cancer cells within a tumor exhibit variable levels of resistance to drugs, ultimately leading to treatment failures. While tumor heterogeneity is recognized as a major obstacle to cancer therapy, standard dose-response measurements for the potency of targeted kinase inhibitors aggregate populations of cells, obscuring intercellular variations in responses. In this work, we develop an analytical and experimental framework to quantify and model dose responses of individual cancer cells to drugs. We first explore the connection between population and single-cell dose responses using a computational model, revealing that multiple heterogeneous populations can yield nearly identical population dose responses. We demonstrate that a single-cell analysis method, which we term a threshold inhibition surface, can differentiate among these populations. To demonstrate the applicability of this method, we develop a dose-titration assay to measure dose responses in single cells. We apply this assay to breast cancer cells responding to phosphatidylinositol-3-kinase inhibition (PI3Ki), using clinically relevant PI3Kis on breast cancer cell lines expressing fluorescent biosensors for kinase activity. We demonstrate that MCF-7 breast cancer cells exhibit heterogeneous dose responses with some cells requiring over ten-fold higher concentrations than the population average to achieve inhibition. Our work reimagines dose-response relationships for cancer drugs in an emerging paradigm of single-cell tumor heterogeneity.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Female , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , MCF-7 Cells
3.
JCI Insight ; 9(8)2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38502228

ABSTRACT

Evaluating the response to immune checkpoint inhibitors (ICIs) remains an unmet challenge in triple-negative breast cancer (TNBC). The requirement for cholesterol in the activation and function of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged the PET radiotracer, eFNP-59. eFNP-59 is an analog of cholesterol that our group validated as an imaging biomarker for cholesterol uptake in preclinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing ICI-responsive and -nonresponsive tumors directly, uptake of fluorescent cholesterol and eFNP-59 increased in T cells from ICI-responsive tumors. We discovered that accumulation of cholesterol by T cells increased in ICI-responding tumors that received anti-PD-1 checkpoint immunotherapy. In patients with TNBC, tumors containing cycling T cells had features of cholesterol uptake and trafficking within those populations. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells allows detection of T cell activation and has potential to assess the success of ICI therapy.


Subject(s)
Cholesterol , Immune Checkpoint Inhibitors , Triple Negative Breast Neoplasms , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/therapy , Animals , Mice , Female , Cholesterol/metabolism , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/pharmacology , Humans , Immunotherapy/methods , Tumor Microenvironment/immunology , Positron-Emission Tomography/methods , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor , Lymphocyte Activation
4.
PNAS Nexus ; 3(2): pgae014, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312224

ABSTRACT

Self-sufficiency (autonomy) in growth signaling, the earliest recognized hallmark of cancer, is fueled by the tumor cell's ability to "secrete-and-sense" growth factors (GFs); this translates into cell survival and proliferation that is self-sustained by autocrine/paracrine secretion. A Golgi-localized circuitry comprised of two GTPase switches has recently been implicated in the orchestration of growth signaling autonomy. Using breast cancer cells that are either endowed or impaired (by gene editing) in their ability to assemble the circuitry for growth signaling autonomy, here we define the transcriptome, proteome, and phenome of such an autonomous state, and unravel its role during cancer progression. We show that autonomy is associated with enhanced molecular programs for stemness, proliferation, and epithelial-mesenchymal plasticity. Autonomy is both necessary and sufficient for anchorage-independent GF-restricted proliferation and resistance to anticancer drugs and is required for metastatic progression. Transcriptomic and proteomic studies show that autonomy is associated, with a surprising degree of specificity, with self-sustained epidermal growth factor receptor (EGFR)/ErbB signaling. Derivation of a gene expression signature for autonomy revealed that growth signaling autonomy is uniquely induced in circulating tumor cells (CTCs), the harshest phase in the life of tumor cells when it is deprived of biologically available epidermal growth factor (EGF). We also show that autonomy in CTCs tracks therapeutic response and prognosticates outcome. These data support a role for growth signaling autonomy in multiple processes essential for the blood-borne dissemination of human breast cancer.

5.
Trends Biochem Sci ; 49(4): 286-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38341333

ABSTRACT

Eukaryotic cells learn and adapt via unknown network architectures. Recent work demonstrated a circuit of two GTPases used by cells to overcome growth factor scarcity, encouraging our view that artificial and biological intelligence share strikingly similar design principles and that cells function as deep reinforcement learning (RL) agents in uncertain environments.


Subject(s)
GTP Phosphohydrolases , Signal Transduction , GTP Phosphohydrolases/metabolism
6.
Magn Reson Med ; 91(6): 2568-2578, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38265182

ABSTRACT

PURPOSE: Analyzing bone marrow in the hematologic cancer myelofibrosis requires endpoint histology in mouse models and bone marrow biopsies in patients. These methods hinder the ability to monitor therapy over time. Preclinical studies typically begin treatment before mice develop myelofibrosis, unlike patients who begin therapy only after onset of disease. Using clinically relevant, quantitative MRI metrics allowed us to evaluate treatment in mice with established myelofibrosis. METHODS: We used chemical shift-encoded fat imaging, DWI, and magnetization transfer sequences to quantify bone marrow fat, cellularity, and macromolecular components in a mouse model of myelofibrosis. We monitored spleen volume, the established imaging marker for treatment, with anatomic MRI. After confirming bone marrow disease by MRI, we randomized mice to treatment with an approved drug (ruxolitinib or fedratinib) or an investigational agent, navitoclax, for 33 days. We measured the effects of therapy over time with bone marrow and spleen MRI. RESULTS: All treatments produced heterogeneous responses with improvements in bone marrow evident in subsets of individual mice in all treatment groups. Reductions in spleen volume commonly occurred without corresponding improvement in bone marrow. MRI revealed patterns associated with effective and ineffective responses to treatment in bone marrow and identified regional variations in efficacy within a bone. CONCLUSIONS: Quantitative MRI revealed modest, heterogeneous improvements in bone marrow disease when treating mice with established myelofibrosis. These results emphasize the value of bone marrow MRI to assess treatment in preclinical models and the potential to advance clinical trials for patients.


Subject(s)
Bone Marrow , Primary Myelofibrosis , Animals , Mice , Bone Marrow/diagnostic imaging , Bone Marrow/pathology , Magnetic Resonance Imaging , Primary Myelofibrosis/diagnostic imaging , Primary Myelofibrosis/drug therapy , Primary Myelofibrosis/pathology , Spleen/diagnostic imaging
8.
Radiol Imaging Cancer ; 5(6): e230191, 2023 11.
Article in English | MEDLINE | ID: mdl-37999631

Subject(s)
Caregivers , Humans
9.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873149

ABSTRACT

Predicting the response to cancer immunotherapy remains an unmet challenge in triple-negative breast cancer (TNBC) and other malignancies. T cells, the major target of current checkpoint inhibitor immunotherapies, accumulate cholesterol during activation to support proliferation and signaling. The requirement of cholesterol for anti-tumor functions of T cells led us to hypothesize that quantifying cellular accumulation of this molecule could distinguish successful from ineffective checkpoint immunotherapy. To analyze accumulation of cholesterol by T cells in the immune microenvironment of breast cancer, we leveraged a novel positron emission tomography (PET) radiotracer, FNP-59. FNP-59 is an analog of cholesterol that our group has validated as an imaging biomarker for cholesterol uptake in pre-clinical models and initial human studies. In immunocompetent mouse models of TNBC, we found that elevated uptake of exogenous labeled cholesterol analogs functions as a marker for T cell activation. When comparing immune checkpoint inhibitor (ICI)-responsive EO771 tumors to non-responsive AT-3 tumors, we found significantly higher uptake of a fluorescent cholesterol analog in T cells of the ICI-responsive tumors both in vitro and in vivo. Using the FNP-59 radiotracer, we discovered that accumulation of cholesterol by T cells increased further in ICI-responding tumors that received ant-PD-1 checkpoint immunotherapy. We verified these data by mining single cell sequencing data from patients with TNBC. Patients with tumors containing cycling T cells showed gene expression signatures of cholesterol uptake and trafficking. These results suggest that uptake of exogenous cholesterol analogs by tumor-infiltrating T cells predict T cell activation and success of ICI therapy.

10.
Oncotarget ; 14: 879-889, 2023 10 04.
Article in English | MEDLINE | ID: mdl-37791907

ABSTRACT

Drug resistance is a major barrier against successful treatments of cancer patients. Gain of stemness under drug pressure is a major mechanism that renders treatments ineffective. Identifying approaches to target cancer stem cells (CSCs) is expected to improve treatment outcomes for patients. To elucidate the role of cancer stemness in resistance of colorectal cancer cells to targeted therapies, we developed spheroid cultures of patient-derived BRAFmut and KRASmut tumor cells and studied resistance mechanisms to inhibition of MAPK pathway through phenotypic and gene and protein expression analysis. We found that treatments enriched the expression of CSC markers CD166, ALDH1A3, CD133, and LGR5 and activated PI3K/Akt pathway in cancer cells. We examined various combination treatments to block these activities and found that a triple combination against BRAF, EGFR, and MEK significantly reduced stemness and activities of oncogenic signaling pathways. This study demonstrates the feasibility of blocking stemness-mediated drug resistance and tumorigenic activities in colorectal cancer.


Subject(s)
Colorectal Neoplasms , Proto-Oncogene Proteins B-raf , Humans , Proto-Oncogene Proteins B-raf/genetics , Phosphatidylinositol 3-Kinases , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , ErbB Receptors , Mitogen-Activated Protein Kinase Kinases
12.
Lab Chip ; 23(21): 4619-4635, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37750357

ABSTRACT

Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.


Subject(s)
Actins , Microfluidics , Humans , Actins/analysis , Extracellular Matrix/chemistry , Cell Movement/physiology , Collagen/metabolism
13.
JCI Insight ; 8(18)2023 09 22.
Article in English | MEDLINE | ID: mdl-37607007

ABSTRACT

Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination. Here, we show that clinical samples of primary invasive carcinoma and chemoresistant breast cancer metastasis contain a unique hybrid cancer cell population coexpressing pancytokeratin and the MSC marker fibroblast activation protein-α. We show that hybrid cells form in primary tumors and that they promote breast cancer metastasis and chemoresistance. Using single-cell microfluidics and in vivo models, we found that there are polyploid senescent cells within the hybrid cell population that contribute to metastatic dissemination. Our data reveal that Wnt Family Member 5A (WNT5A) plays a crucial role in supporting the chemoresistance properties of hybrid cells. Furthermore, we identified that WNT5A mediates hybrid cell formation through a phagocytosis-like mechanism that requires BCC-derived IL-6 and MSC-derived C-C Motif Chemokine Ligand 2. These findings reveal hybrid cell formation as a mechanism of chemoresistance and suggest that interrupting this mechanism may be a strategy in overcoming breast cancer drug resistance.


Subject(s)
Mesenchymal Stem Cells , Triple Negative Breast Neoplasms , Humans , Drug Resistance, Neoplasm , Cell Line, Tumor , Neoplasm Recurrence, Local/pathology , Mesenchymal Stem Cells/metabolism , Triple Negative Breast Neoplasms/metabolism
14.
Nat Commun ; 14(1): 4808, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558722

ABSTRACT

Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust ßarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced ßarr-coupling compared to CXCR7. These two receptors induce distinct ßarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for ßarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.


Subject(s)
Receptors, CXCR , Receptors, CXCR/genetics , Receptors, CXCR/metabolism , Receptors, CXCR4/metabolism , Signal Transduction , GTP-Binding Proteins , Mitogen-Activated Protein Kinase 3/metabolism , Chemokine CXCL12/metabolism
16.
J Biophotonics ; 16(11): e202300142, 2023 11.
Article in English | MEDLINE | ID: mdl-37382181

ABSTRACT

Multispectral optoacoustic tomography (MSOT) is a beneficial technique for diagnosing and analyzing biological samples since it provides meticulous details in anatomy and physiology. However, acquiring high through-plane resolution volumetric MSOT is time-consuming. Here, we propose a deep learning model based on hybrid recurrent and convolutional neural networks to generate sequential cross-sectional images for an MSOT system. This system provides three modalities (MSOT, ultrasound, and optoacoustic imaging of a specific exogenous contrast agent) in a single scan. This study used ICG-conjugated nanoworms particles (NWs-ICG) as the contrast agent. Instead of acquiring seven images with a step size of 0.1 mm, we can receive two images with a step size of 0.6 mm as input for the proposed deep learning model. The deep learning model can generate five other images with a step size of 0.1 mm between these two input images meaning we can reduce acquisition time by approximately 71%.


Subject(s)
Photoacoustic Techniques , Tomography , Tomography/methods , Contrast Media , Tomography, X-Ray Computed , Neural Networks, Computer , Photoacoustic Techniques/methods
17.
iScience ; 26(6): 106788, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37235049

ABSTRACT

Mitochondria produce reactive oxygen species (ROS), which function in signal transduction. Mitochondrial dynamics, encompassing morphological shifts between fission and fusion, can directly impact ROS levels in cancer cells. In this study, we identified an ROS-dependent mechanism for how enhanced mitochondrial fission inhibits triple negative breast cancer (TNBC) cell migration. We found that enforcing mitochondrial fission in TNBC resulted in an increase in intracellular ROS levels and reduced cell migration and the formation of actin-rich migratory structures. Consistent with mitochondrial fission, increasing ROS levels in cells inhibited cell migration. Conversely, reducing ROS levels with either a global or mitochondrially targeted scavenger overcame the inhibitory effects of mitochondrial fission. Mechanistically, we found that the ROS sensitive SHP-1/2 phosphatases partially regulate inhibitory effects of mitochondrial fission on TNBC migration. Overall, our work reveals the inhibitory effects of ROS in TNBC and supports mitochondrial dynamics as a potential therapeutic target for cancer.

18.
Radiol Imaging Cancer ; 5(2): e230016, 2023 03.
Article in English | MEDLINE | ID: mdl-36929901
20.
bioRxiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36993616

ABSTRACT

Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network- analyses workflow to identify a comprehensive catalog of contact-induced changes. Induced genes and proteins in cancer cells, some borrowed and others tumor-intrinsic, were not recapitulated merely by conditioned media from MSCs. Protein-protein interaction networks revealed the rich connectome between 'borrowed' and 'intrinsic' components. Bioinformatic approaches prioritized one of the 'borrowed' components, CCDC88A /GIV, a multi-modular metastasis-related protein which has recently been implicated in driving one of the hallmarks of cancers, i.e., growth signaling autonomy. MSCs transferred GIV protein to ER+ breast cancer cells (that lack GIV) through tunnelling nanotubes via connexin (Cx)43-facilitated intercellular transport. Reinstating GIV alone in GIV-negative breast cancer cells reproduced ∼20% of both the 'borrowed' and the 'intrinsic' gene induction patterns from contact co-cultures; conferred resistance to anti-estrogen drugs; and enhanced tumor dissemination. Findings provide a multiomic insight into MSC→tumor cell intercellular transport and validate how transport of one such candidate, GIV, from the haves (MSCs) to have-nots (ER+ breast cancer) orchestrates aggressive disease states.

SELECTION OF CITATIONS
SEARCH DETAIL