Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Language
Publication year range
1.
Biol Res ; 56(1): 29, 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37270528

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKα and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.


Subject(s)
AMP-Activated Protein Kinases , Induced Pluripotent Stem Cells , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Mice, Inbred mdx , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Atrophy/metabolism , Atrophy/pathology , Hypoxia/metabolism , Autophagy , RNA, Messenger/metabolism
2.
Biol. Res ; 56: 29-29, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1513741

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked lethal genetic disorder for which there is no effective treatment. Previous studies have shown that stem cell transplantation into mdx mice can promote muscle regeneration and improve muscle function, however, the specific molecular mechanisms remain unclear. DMD suffers varying degrees of hypoxic damage during disease progression. This study aimed to investigate whether induced pluripotent stem cells (iPSCs) have protective effects against hypoxia-induced skeletal muscle injury. RESULTS: In this study, we co-cultured iPSCs with C2C12 myoblasts using a Transwell nested system and placed them in a DG250 anaerobic workstation for oxygen deprivation for 24 h. We found that iPSCs reduced the levels of lactate dehydrogenase and reactive oxygen species and downregulated the mRNA and protein levels of BAX/BCL2 and LC3II/ LC3I in hypoxia-induced C2C12 myoblasts. Meanwhile, iPSCs decreased the mRNA and protein levels of atrogin-1 and MuRF-1 and increased myotube width. Furthermore, iPSCs downregulated the phosphorylation of AMPKA and ULK1 in C2C12 myotubes exposed to hypoxic damage. CONCLUSIONS: Our study showed that iPSCs enhanced the resistance of C2C12 myoblasts to hypoxia and inhibited apoptosis and autophagy in the presence of oxidative stress. Further, iPSCs improved hypoxia-induced autophagy and atrophy of C2C12 myotubes through the AMPK/ULK1 pathway. This study may provide a new theoretical basis for the treatment of muscular dystrophy in stem cells.


Subject(s)
Animals , Mice , AMP-Activated Protein Kinases/metabolism , Induced Pluripotent Stem Cells , Atrophy/metabolism , Atrophy/pathology , Autophagy , RNA, Messenger/metabolism , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscle Fibers, Skeletal/metabolism , Hypoxia/metabolism
3.
Braz J Med Biol Res ; 53(5): e9292, 2020.
Article in English | MEDLINE | ID: mdl-32321151

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an aberrant activation of immune cells partly due to the dysfunction of cytokines such as type I interferons (IFNs). Long non-coding RNA MALAT1 has been found to play a pathogenic role in SLE; however, the underlying mechanisms are still poorly understood. Bioinformatics analysis showed the up-regulation of type I IFN downstream effectors OAS2, OAS3, and OASL (OAS-like) in CD4+ T cells, CD19+ B cells, and CD33+ myeloid cells in patients with active SLE compared to healthy participants. In this study, peripheral blood mononuclear cells (PBMCs), CD19+ B, and CD4+ T cells were isolated from active SLE patients and healthy participants. PCR was performed to quantify MALAT1, OAS2, OAS3, and OASL expression in immune cells. MALAT1, OAS2, OAS3, and OASL were knocked down in CD4+ T cells to investigate the regulatory effect of MALAT1 on the effectors and their involvement in type I IFNs-mediated inflammation. Results showed higher OAS2, OAS3, and OASL expression in active SLE patients. MALAT1 expression was positively correlated to OAS2, OAS3, and OASL expression in CD19+ B or CD4+ T cells. MALAT1 knockdown decreased OAS2, OAS3, and OASL expression. Treatment with IFN-α-2a increased the expression of TNF-α, IL-1ß, and IFN-α in CD4+ T cells. However, knockdown of MALAT1, OAS2, OAS3, and OASL alone inhibited the effect of IFN-α-2a on TNF-α and IL-1ß. This study suggested the involvement of MALAT1 in type I IFNs-mediated SLE by up-regulating OAS2, OAS3, and OASL.


Subject(s)
2',5'-Oligoadenylate Synthetase/metabolism , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/metabolism , RNA, Long Noncoding/metabolism , Adult , Case-Control Studies , Humans , Male , Middle Aged , Real-Time Polymerase Chain Reaction , Up-Regulation , Young Adult
4.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;53(5): e9292, 2020. tab, graf
Article in English | LILACS | ID: biblio-1098117

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disease associated with an aberrant activation of immune cells partly due to the dysfunction of cytokines such as type I interferons (IFNs). Long non-coding RNA MALAT1 has been found to play a pathogenic role in SLE; however, the underlying mechanisms are still poorly understood. Bioinformatics analysis showed the up-regulation of type I IFN downstream effectors OAS2, OAS3, and OASL (OAS-like) in CD4+ T cells, CD19+ B cells, and CD33+ myeloid cells in patients with active SLE compared to healthy participants. In this study, peripheral blood mononuclear cells (PBMCs), CD19+ B, and CD4+ T cells were isolated from active SLE patients and healthy participants. PCR was performed to quantify MALAT1, OAS2, OAS3, and OASL expression in immune cells. MALAT1, OAS2, OAS3, and OASL were knocked down in CD4+ T cells to investigate the regulatory effect of MALAT1 on the effectors and their involvement in type I IFNs-mediated inflammation. Results showed higher OAS2, OAS3, and OASL expression in active SLE patients. MALAT1 expression was positively correlated to OAS2, OAS3, and OASL expression in CD19+ B or CD4+ T cells. MALAT1 knockdown decreased OAS2, OAS3, and OASL expression. Treatment with IFN-α-2a increased the expression of TNF-α, IL-1β, and IFN-α in CD4+ T cells. However, knockdown of MALAT1, OAS2, OAS3, and OASL alone inhibited the effect of IFN-α-2a on TNF-α and IL-1β. This study suggested the involvement of MALAT1 in type I IFNs-mediated SLE by up-regulating OAS2, OAS3, and OASL.


Subject(s)
Humans , Male , Adult , Middle Aged , Young Adult , Interferon Type I/metabolism , RNA, Long Noncoding/metabolism , Lupus Erythematosus, Systemic/metabolism , Case-Control Studies , Up-Regulation , Real-Time Polymerase Chain Reaction
5.
Genet Mol Biol ; 40(2): 442-449, 2017.
Article in English | MEDLINE | ID: mdl-28590502

ABSTRACT

Cluster of differentiation 40 (CD40), the receptor for CD154, is a member of the tumor necrosis factor (TNF) receptor superfamily. Several studies have been conducted to investigate the effect of the CD40 rs1883832 polymorphism on atherosclerotic disease in different population; however, inconsistent results were obtained. In this study, we investigated the association of four polymorphisms (rs1883832, rs13040307, rs752118 and rs3765459) of CD40 gene and their effect on CD40 expression with the risk of ischemic stroke (IS) in a Chinese population. Three hundred and eighty patients with IS and 450 control subjects were included in the study. The CD40 polymorphisms were discriminated by Snapshot SNP genotyping assay. Serum soluble CD40 (sCD40) levels were detected by ELISA. We found that the rs1883832CT and rs1883832TT genotypes were associated with an increased risk of IS compared with the rs1883832CC genotype (OR = 1.42, 95% CI: 1.03-1.95, p = 0.030 and OR = 1.91, 95% CI: 1.29-2.82, P = 0.001, respectively), and the rs1883832T allele was associated with a significantly increased risk of IS compared with rs1883832C allele (OR = 1.40, 95% CI: 1.15-1.70, P = 0.001). Elevated serum sCD40 levels were observed in patients with IS compared with the control gropu (P < 0.01). Individuals carrying the rs1883832TT or rs1883832CT genotypes showed significantly higher sCD40 levels compared with the rs1883832CC genotype in the IS group [(64.8 ± 25.4 pg/mL, TT = 94); (63.9 ± 24.3 pg/mL, CT = 185) vs (53.3 ± 22.5 pg/mL, CC = 101), P < 0.01]. The TCCA haplotype was associated with an increased risk of IS compared with the control group (OR = 2.10, 95% CI: 1.23-3.58, p = 0.005). However, we did not find a significant association between the other three polymorphisms and IS risk. In conclusion, after a comprehensive comparison with other studies, we confirmed that the rs1883832T allele but not the rs1883832C allele is associated with an increased risk of IS. The rs1883832 polymorphism may exert influences on abnormal CD40 expression in IS patients among the Chinese population.

6.
Genet. mol. biol ; Genet. mol. biol;40(2): 442-449, Apr.-June 2017. tab, graf
Article in English | LILACS | ID: biblio-892401

ABSTRACT

Abstract Cluster of differentiation 40 (CD40), the receptor for CD154, is a member of the tumor necrosis factor (TNF) receptor superfamily. Several studies have been conducted to investigate the effect of the CD40 rs1883832 polymorphism on atherosclerotic disease in different population; however, inconsistent results were obtained. In this study, we investigated the association of four polymorphisms (rs1883832, rs13040307, rs752118 and rs3765459) of CD40 gene and their effect on CD40 expression with the risk of ischemic stroke (IS) in a Chinese population. Three hundred and eighty patients with IS and 450 control subjects were included in the study. The CD40 polymorphisms were discriminated by Snapshot SNP genotyping assay. Serum soluble CD40 (sCD40) levels were detected by ELISA. We found that the rs1883832CT and rs1883832TT genotypes were associated with an increased risk of IS compared with the rs1883832CC genotype (OR = 1.42, 95% CI: 1.03-1.95, p = 0.030 and OR = 1.91, 95% CI: 1.29-2.82, P = 0.001, respectively), and the rs1883832T allele was associated with a significantly increased risk of IS compared with rs1883832C allele (OR = 1.40, 95% CI: 1.15-1.70, P = 0.001). Elevated serum sCD40 levels were observed in patients with IS compared with the control gropu (P < 0.01). Individuals carrying the rs1883832TT or rs1883832CT genotypes showed significantly higher sCD40 levels compared with the rs1883832CC genotype in the IS group [(64.8 ± 25.4 pg/mL, TT = 94); (63.9 ± 24.3 pg/mL, CT = 185) vs (53.3 ± 22.5 pg/mL, CC = 101), P < 0.01]. The TCCA haplotype was associated with an increased risk of IS compared with the control group (OR = 2.10, 95% CI: 1.23-3.58, p = 0.005). However, we did not find a significant association between the other three polymorphisms and IS risk. In conclusion, after a comprehensive comparison with other studies, we confirmed that the rs1883832T allele but not the rs1883832C allele is associated with an increased risk of IS. The rs1883832 polymorphism may exert influences on abnormal CD40 expression in IS patients among the Chinese population.

7.
Hemoglobin ; 41(1): 50-52, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28395541

ABSTRACT

Hemoglobin (Hb) is the protein responsible for oxygen transportation. It is a tetrameric protein comprising two α- and two ß-globin subunits. In the literature, a large number of mutations in the α- and ß-globin genes have been documented. Among these mutations, Hb Presbyterian (HBB: c.327 C>G), is a naturally occurring mutant exerting low oxygen affinity. The C to G exchange (AAC>AAG) at codon 108 of the ß-globin gene results in the substitution of asparagine by lysine. Here, we document the identification of HBB: c.327 C>G in a 6-year-old female patient and her father from Nicaragua and Cuba, respectively. The presence of the abnormal Hb was confirmed by cellulose acetate electrophoresis, high performance liquid chromatography (HPLC) and genomic DNA sequencing. The ß-globin gene sequences for both, father and daughter, disclosed the heterozygous mutation at codon 108 to be Hb Presbyterian or HBB: c.327 C>G. The mutant Hb was previously reported in four families from North America, Germany, Japan and Spain, respectively. This is the fifth family carrying HBB: c.327 C>G described to date and the first report from Latin America.


Subject(s)
Hemoglobinopathies/diagnosis , Hemoglobinopathies/genetics , Hemoglobins, Abnormal/genetics , Mutation , beta-Globins/genetics , Adult , Alleles , Child , Codon , DNA Mutational Analysis , Female , Genotype , Hemoglobinopathies/blood , Humans , Male , Nicaragua , Phenotype
8.
Genet. mol. biol ; Genet. mol. biol;31(2): 532-538, 2008. ilus, tab
Article in English | LILACS | ID: lil-484993

ABSTRACT

We investigated inheritance and carried out gene fine mapping of aroma in crosses between the aromatic elite hybrid rice Oryza sativa indica variety Chuanxiang-29B (Ch-29B) and the non-aromatic rice O. sativa indica variety R2 and O. sativa japonica Lemont (Le). The F1 grains and leaves were non-aromatic while the F2 non-aroma to aroma segregation pattern was 3:1. The F3 segregation ratio was consistent with the expected 1:2:1 for a single recessive aroma gene in Ch-29B. Linkage analysis between simple sequence repeat (SSR) markers and the aroma locus for the aromatic F2 plants mapped the Ch-29B aroma gene to a chromosome 8 region flanked by SSR markers RM23120 at 0.52 cM and RM3459 at 1.23 cM, a replicate F2 population confirming these results. Three bacterial artificial chromosome (BAC) clones cover chromosome 8 markers RM23120 and RM3459. Our molecular mapping data from the two populations indicated that the aroma locus occurs in a 142.85 kb interval on BAC clones AP005301 or AP005537, implying that it might be the same gene reported by Bradbury et al (2005a; Plant Biotec J. 3:363-370). The flanking markers Aro7, RM23120 and RM3459 identified by us could greatly accelerate the efficiency and precision of aromatic rice breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL