Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 19(6): e202300946, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38143244

ABSTRACT

Metal-organic frameworks (MOFs) and their derivatives have been extensively employed in Oxygen Evolution Reaction (OER) catalysts due to their significantly larger specific surface areas, distinct metal centers, and well-organized porous structures. However, the microporous structure of MOFs and their derivatives presents mass transfer resistance, limiting their further development. Drawing inspiration from hierarchical structures allowing for the transport and exchange of substances in the biological world, we designed and fabricated biomimetic layered porous structures within ZIF-67 and its derivatives. Based on this, we achieved a three-dimensional ordered layered porous nitrogen-doped carbon-coated magnetic cobalt catalyst (3DOLP Co@NDC) with a biomimetic pore structure. It is found that the 3DOLP Co@NDC (352 mV @10 mA cm-1) was better than Co@NDC (391 mV @10 mA cm-1). The introduction of a three-dimensional ordered layered porous structure is conducive to increasing the specific surface area of the material, increasing the electrochemical active area, and improving the catalytic performance of the material. The introduction of a three-dimensional ordered layered porous structure would help to build a bionic grade pore structure. The existence of biomimetic grade pore structure can effectively reduce the mass transfer resistance, improve the material exchange efficiency, and accelerate the reaction kinetics.

2.
Small ; 20(22): e2309727, 2024 May.
Article in English | MEDLINE | ID: mdl-38112245

ABSTRACT

Integrating single atoms and clusters into one system represents a novel strategy for achieving the desired catalytic performance. In comparison to single-atom catalysts, catalysts combining single atoms and clusters harness the advantages of both, thus displaying greater potential. Nevertheless, constructing single-atom-cluster systems remains challenging, and the fundamental mechanism for enhancing catalytic activity remains elusive. In this study, a directly confined preparation of a 3D hollow sea urchin-like carbon structure (MnSA/MnAC-SSCNR) is developed. Mn single atoms synergistically interact with Mn clusters, optimizing and reducing energy barriers in the reaction pathway, thus enhancing reaction kinetics. Consequently, in contrast to Mn single-atom catalysts (MnSA-SSCNR), MnSA/MnAC-SSCNR exhibits significantly improved oxygen reduction activity, with a half-wave potential (E1/2) of 0.90 V in 0.1 m KOH, surpassing that of MnSA-SSCNR and Pt/C. This work demonstrates a strategy of remote synergy between heterogeneous single atoms and clusters, which not only contributes to electrocatalytic reactions but also holds potential for reactions involving more complex products.

SELECTION OF CITATIONS
SEARCH DETAIL
...