Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 27
2.
Metab Syndr Relat Disord ; 21(1): 16-24, 2023 02.
Article En | MEDLINE | ID: mdl-36318809

Background: Resting skeletal muscle in insulin resistance prefers to oxidize carbohydrate rather than lipid, exhibiting metabolic inflexibility. Although this is established in resting muscle, complexities involved in directly measuring fuel oxidation using indirect calorimetry across a muscle bed have limited studies of this phenomenon in working skeletal muscle. During mild exercise and at rest, whole-body indirect calorimetry imperfectly estimates muscle fuel oxidation. We provide evidence that a method termed "ΔRER" can reasonably estimate fuel oxidation in skeletal muscle activated by exercise. Methods: Completely sedentary volunteers (n = 20, age 31 ± 2 years, V̇O2peak 24.4 ± 1.5 mL O2 per min/kg) underwent glucose clamps to determine insulin sensitivity and graded exercise consisting of three periods of mild steady-state cycle ergometry (15, 30, 45 watts, or 10%, 20%, and 30% of maximum power) with measurements of whole-body gas exchange. ΔRER, the RER in working muscle, was calculated as (V̇CO2exercise -V̇CO2rest)/(V̇O2exercise - V̇O2rest), from which the fraction of fuel accounted for by lipid was estimated. Results: Lactate levels were low and stable during steady-state exercise. Muscle biopsies were used to estimate mitochondrial content. The rise of V̇O2 at onset of exercise followed a monoexponential function, with a time constant of 51 ± 7 sec, typical of skeletal muscle; the average O2 cost of work was about 12 mL O2/watt/min, representing a mechanical efficiency of about 24%. At work rates of 30 or 45 watts, active muscle relied predominantly on carbohydrate, independent of insulin sensitivity within this group of very sedentary volunteers. Conclusions: The fraction of muscle fuel oxidation from fat was predicted by power output (P < 0.001) and citrate synthase activity (P < 0.05), indicating that low mitochondrial content may be the main driver of fuel choice in sedentary people, independent of insulin sensitivity.


Insulin Resistance , Humans , Adult , Carbohydrates , Exercise/physiology , Muscle, Skeletal/metabolism , Lipids , Oxygen Consumption
3.
Anal Biochem ; 630: 114319, 2021 10 01.
Article En | MEDLINE | ID: mdl-34332952

Evidence suggests acetylation of human adenine nucleotide translocase 1 (ANT1) at lysine 23 (Lys23) reduces binding of ADP. Lys23 contributes to the positive charge that facilitates this interaction. This study was undertaken to characterize ANT1 abundance and acetylation by a novel method using small amounts of human skeletal muscle biopsies. Lysates of whole muscle or mitochondria from the same tissue were prepared from needle biopsies of vastus lateralis muscle of healthy volunteers. Lysed proteins were resolved on gels, the section containing ANT1 (surrounding 30 Kd) was excised, digested with trypsin, spiked with labeled unacetylated and acetylated synthetic standard peptides and analyzed by mass spectrometry. Natural logarithm transformation of data linearized ion intensities over a 10-fold range of peptide mass. Coefficients of variation ranged from 7 to 30% for ANT1 abundance and Lys23 acetylation. In three volunteers, ANT1 content was 8.36 ± 0.33 nmol/g wet weight muscle and 0.64 ± 0.05 nmol/mg mitochondria, so mitochondrial content was 13.3 ± 2.4 mg mitochondria per gram muscle. Acetylation of Lys23 averaged 14.3 ± 4.2% and 4.87 ± 1.84% in whole muscle and mitochondria, respectively. This assay makes it possible to assess effects of acetylation on the function of ANT1 in human muscle.


Adenine Nucleotide Translocator 1/metabolism , Lysine/metabolism , Muscle, Skeletal/metabolism , Acetylation , Adenine Nucleotide Translocator 1/analysis , Healthy Volunteers , Humans , Lysine/chemistry , Muscle, Skeletal/chemistry
4.
Front Physiol ; 12: 649461, 2021.
Article En | MEDLINE | ID: mdl-33897458

PURPOSE: Insulin resistant muscle is resistant to gene expression changes induced by acute exercise. This study was undertaken to identify transcription factors that differentially respond to exercise in insulin resistance. Candidate transcription factors were identified from analysis of 5'-untranslated regions (5'-UTRs) of exercise responsive genes and from analysis of the 5'-UTRs of genes coding for proteins that differ in abundance in insulin resistance. RESEARCH DESIGN AND METHODS: Twenty participants took part in this study. Insulin sensitivity was assessed by an euglycemic clamp. Participants were matched for aerobic capacity and performed a single 48 min bout of exercise with sets at 70 and 90% of maximum heart rate. Muscle biopsies were obtained at resting conditions, 30 min and 24 h after exercise. Global proteomics analysis identified differentially abundant proteins in muscle. The 5'-UTRs of genes coding for significant proteins were subjected to transcription factor enrichment analysis to identify candidate transcription factors. Q-rt-PCR to determine expression of candidate transcription factors was performed on RNA from resting and post-exercise muscle biopsies; immunoblots quantified protein abundance. RESULTS: Proteins involved in mitochondrial function, protein targeting and translation, and metabolism were among those significantly different between lean and obese groups. Transcription factor enrichment analysis of genes coding for these proteins revealed new candidate transcription factors to be evaluated along the previously identified factors. Q-rt-PCR analysis of RNA and immunoblot analysis from pre- and post-exercise muscle biopsies revealed several transcription and growth factors that had altered responses to exercise in insulin resistant participants. A significant increase (EGR3 and CTGF) and decrease (RELA and ATF2) in the mRNA expression of transcription and growth factors was found after exercise in the lean group, but not in the obese participants. CONCLUSIONS: These results confirm findings of an association between insulin sensitivity and transcription factor mRNA response to exercise and show that obesity also may be a sufficient prerequisite for exercise resistance. Analysis of the muscle proteome together with determination of effects of exercise on expression of transcription factors suggests that abnormal responses of transcription factors to exercise may be responsible for differences in protein abundances in insulin resistant muscle.

5.
Biochem Biophys Rep ; 26: 100928, 2021 Jul.
Article En | MEDLINE | ID: mdl-33665377

VWA8 (Von Willebrand A Domain Containing Protein 8) is a AAA+ ATPase that is localized to the mitochondrial matrix and is widely expressed in highly energetic tissues. Originally found to be higher in abundance in livers of mice fed a high fat diet, deletion of the VWA8 gene in differentiated mouse AML12 hepatocytes unexpectedly produced a phenotype of higher mitochondrial and nonmitochondrial oxidative metabolism, higher ROS (reactive oxygen species) production mainly from NADPH oxidases, and increased HNF4a expression. The purposes of this study were first, to determine whether higher mitochondrial oxidative capacity in VWA8 null hepatocytes is the product of higher capacity in all aspects of the electron transport chain and oxidative phosphorylation, and second, the density of cristae in mitochondria and mitochondrial content was measured to determine if higher mitochondrial oxidative capacity is accompanied by greater cristae area and mitochondrial abundance. Electron transport chain complexes I, II, III, and IV activities all were higher in hepatocytes in which the VWA8 gene had been deleted using CRISPR/Cas9. A comparison of abundance of proteins in electron transport chain complexes I, III and ATP synthase previously determined using an unbiased proteomics approach in hepatocytes in which VWA8 had been deleted showed agreement with the activity assays. Mitochondrial cristae, the site where electron transport chain complexes are located, were quantified using electron microscopy and stereology. Cristae density, per mitochondrial area, was almost two-fold higher in the VWA8 null cells (P < 0.01), and mitochondrial area was two-fold higher in the VWA8 null cells (P < 0.05). The results of this study allow us to conclude that despite sustained, higher ROS production in VWA8 null cells, a global mitochondrial compensatory response was maintained, resulting in overall higher mitochondrial oxidative capacity.

6.
Arterioscler Thromb Vasc Biol ; 41(2): 734-754, 2021 02.
Article En | MEDLINE | ID: mdl-33297749

OBJECTIVE: NFU1 is a mitochondrial iron-sulfur scaffold protein, involved in iron-sulfur assembly and transfer to complex II and LAS (lipoic acid synthase). Patients with the point mutation NFU1G208C and CRISPR/CAS9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9)-generated rats develop mitochondrial dysfunction leading to pulmonary arterial hypertension. However, the mechanistic understanding of pulmonary vascular proliferation due to a single mutation in NFU1 remains unresolved. Approach and Results: Quantitative proteomics of isolated mitochondria showed the entire phenotypic transformation of NFU1G206C rats with a disturbed mitochondrial proteomic landscape, involving significant changes in the expression of 208 mitochondrial proteins. The NFU1 mutation deranged the expression pattern of electron transport proteins, resulting in a significant decrease in mitochondrial respiration. Reduced reliance on mitochondrial respiration amplified glycolysis in pulmonary artery smooth muscle cell (PASMC) and activated GPD (glycerol-3-phosphate dehydrogenase), linking glycolysis to oxidative phosphorylation and lipid metabolism. Decreased PDH (pyruvate dehydrogenase) activity due to the lipoic acid shortage is compensated by increased fatty acid metabolism and oxidation. PASMC became dependent on extracellular fatty acid sources due to upregulated transporters such as CD36 (cluster of differentiation 36) and CPT (carnitine palmitoyltransferase)-1. Finally, the NFU1 mutation produced a dysregulated antioxidant system in the mitochondria, leading to increased reactive oxygen species levels. PASMC from NFU1 rats showed apoptosis resistance, increased anaplerosis, and attained a highly proliferative phenotype. Attenuation of mitochondrial reactive oxygen species by mitochondrial-targeted antioxidant significantly decreased PASMC proliferation. CONCLUSIONS: The alteration in iron-sulfur metabolism completely transforms the proteomic landscape of the mitochondria, leading toward metabolic plasticity and redistribution of energy sources to the acquisition of a proliferative phenotype by the PASMC.


Apoptosis , Cell Proliferation , Cellular Reprogramming , Energy Metabolism , Mitochondria, Liver/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Point Mutation , Animals , Cells, Cultured , Fatty Acids/metabolism , Female , Mitochondria, Liver/genetics , Mitochondria, Liver/pathology , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/pathology , Phenotype , Proteome , Pulmonary Artery/metabolism , Pulmonary Artery/pathology , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
7.
Biochem Biophys Res Commun ; 521(1): 158-163, 2020 01 01.
Article En | MEDLINE | ID: mdl-31630795

VWA8 is a poorly characterized mitochondrial AAA + ATPase protein. The specific submitochondrial localization of VWA8 remains unclear. The purpose of this study was to determine the specific submitochondrial compartment within which VWA8 resides in order to provide more insight into the function of this protein. Bioinformatics analysis showed that VWA8 has a 34 amino acid N-terminal Matrix-Targeting Signal (MTS) that is similar to those in proteins known to localize to the mitochondrial matrix. Experiments in C2C12 mouse myoblasts using confocal microscopy showed that deletion of the VWA8 MTS (vMTS) resulted in cytosolic, rather than mitochondrial, localization of VWA8. Biochemical analysis using differential sub-fractionation of mitochondria isolated from rat liver showed that VWA8 localizes to the matrix side of inner mitochondrial membrane, similar to the inner mitochondrial membrane protein Electron Transfer Flavoprotein-ubiquinone Oxidoreductase (ETFDH). The results of these experiments show that the vMTS is essential for localization to the mitochondrial matrix and that once there, VWA8 localizes to the matrix side of inner mitochondrial membrane.


Mitochondrial Membranes/metabolism , von Willebrand Factor/metabolism , Animals , Male , Mitochondria/metabolism , Rats , Rats, Sprague-Dawley
8.
Sci Rep ; 9(1): 18347, 2019 12 04.
Article En | MEDLINE | ID: mdl-31797958

We investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6-/- cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.


Adenocarcinoma/genetics , Antigens, CD/genetics , Carcinoma, Pancreatic Ductal/genetics , Cell Adhesion Molecules/genetics , T-Lymphocytes/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Animals , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/therapy , Cell Line, Tumor , Cell Proliferation/genetics , Energy Metabolism/genetics , GPI-Linked Proteins/genetics , Gene Expression Regulation, Neoplastic/genetics , Heterografts , Humans , Mice , Mitochondria/genetics , Molecular Targeted Therapy , Proto-Oncogene Proteins p21(ras)/genetics , T-Lymphocytes/pathology
9.
Biochemistry ; 58(49): 4983-4996, 2019 12 10.
Article En | MEDLINE | ID: mdl-31702900

von Willebrand A domain-containing protein 8 (VWA8) is a poorly characterized, mitochondrial matrix-targeted protein with an AAA ATPase domain and ATPase activity that increases in livers of mice fed a high-fat diet. This study was undertaken to use CRISPR/Cas9 to delete VWA8 in cultured mouse hepatocytes and gain insight into its function. Unbiased omics techniques and bioinformatics were used to guide subsequent assays, including the assessment of oxidative stress and the determination of bioenergetic capacity. Metabolomics analysis showed VWA8 null cells had higher levels of oxidative stress and protein degradation; assays of hydrogen peroxide production revealed higher levels of production of reactive oxygen species (ROS). Proteomics and transcriptomics analyses showed VWA8 null cells had higher levels of expression of mitochondrial proteins (electron transport-chain Complex I, ATP synthase), peroxisomal proteins, and lipid transport proteins. The pattern of higher protein abundance in the VWA8 null cells could be explained by a higher level of hepatocyte nuclear factor 4 α (HNF4α) expression. Bioenergetic assays showed higher rates of carbohydrate oxidation and mitochondrial and nonmitochondrial lipid oxidation in intact and permeabilized cells. Inhibitor assays localized sites of ROS production to peroxisomes and NOX1/4. The rescue of VWA8 protein restored the wild-type phenotype, and treatment with antioxidants decreased the level of HNF4α expression. Thus, loss of VWA8 produces a mitochondrial defect that may be sensed by NOX4, leading to an increase in the level of ROS that results in a higher level of HNF4α. The compensatory HNF4α response results in a higher oxidative capacity and an even higher level of ROS production. We hypothesize that VWA8 is an AAA ATPase protein that plays a role in mitochondrial protein quality.


Adenosine Triphosphatases/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Oxidative Stress , Adenosine Triphosphatases/metabolism , Animals , Cell Line , Gene Deletion , Hepatocyte Nuclear Factor 4/genetics , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Reactive Oxygen Species/metabolism
10.
Mol Cancer Ther ; 16(12): 2862-2870, 2017 Dec.
Article En | MEDLINE | ID: mdl-28958990

Bortezomib is highly effective in the treatment of multiple myeloma; however, emergent drug resistance is common. Consequently, we employed CRISPR targeting 19,052 human genes to identify unbiased targets that contribute to bortezomib resistance. Specifically, we engineered an RPMI8226 multiple myeloma cell line to express Cas9 infected by lentiviral vector CRISPR library and cultured derived cells in doses of bortezomib lethal to parental cells. Sequencing was performed on surviving cells to identify inactivated genes responsible for drug resistance. From two independent whole-genome screens, we selected 31 candidate genes and constructed a second CRISPR sgRNA library, specifically targeting each of these 31 genes with four sgRNAs. After secondary screening for bortezomib resistance, the top 20 "resistance" genes were selected for individual validation. Of these 20 targets, the proteasome regulatory subunit PSMC6 was the only gene validated to reproducibly confer bortezomib resistance. We confirmed that inhibition of chymotrypsin-like proteasome activity by bortezomib was significantly reduced in cells lacking PSMC6. We individually investigated other members of the PSMC group (PSMC1 to 5) and found that deficiency in each of those subunits also imparts bortezomib resistance. We found 36 mutations in 19S proteasome subunits out of 895 patients in the IA10 release of the CoMMpass study (https://themmrf.org). Our findings demonstrate that the PSMC6 subunit is the most prominent target required for bortezomib sensitivity in multiple myeloma cells and should be examined in drug-refractory populations. Mol Cancer Ther; 16(12); 2862-70. ©2017 AACR.


Antineoplastic Agents/therapeutic use , Bortezomib/therapeutic use , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Multiple Myeloma/drug therapy , Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Humans , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Proteasome Endopeptidase Complex/metabolism
11.
Cancer Res ; 77(16): 4317-4327, 2017 08 15.
Article En | MEDLINE | ID: mdl-28619709

FAM46C is one of the most recurrently mutated genes in multiple myeloma; however its role in disease pathogenesis has not been determined. Here we demonstrate that wild-type (WT) FAM46C overexpression induces substantial cytotoxicity in multiple myeloma cells. In contrast, FAM46C mutations found in multiple myeloma patients abrogate this cytotoxicity, indicating a survival advantage conferred by the FAM46C mutant phenotype. WT FAM46C overexpression downregulated IRF4, CEBPB, and MYC and upregulated immunoglobulin (Ig) light chain and HSPA5/BIP Furthermore, pathway analysis suggests that enforced FAM46C expression activated the unfolded protein response pathway and induced mitochondrial dysfunction. CRISPR-mediated depletion of endogenous FAM46C enhanced multiple myeloma cell growth, decreased Ig light chain and HSPA5/BIP expression, activated ERK and antiapoptotic signaling, and conferred relative resistance to dexamethasone and lenalidomide treatments. Genes altered in FAM46C-depleted cells were enriched for signaling pathways regulating estrogen, glucocorticoid, B-cell receptor signaling, and ATM signaling. Together these results implicate FAM46C in myeloma cell growth and survival and identify FAM46C mutation as a contributor to myeloma pathogenesis and disease progression via perturbation in plasma cell differentiation and endoplasmic reticulum homeostasis. Cancer Res; 77(16); 4317-27. ©2017 AACR.


Multiple Myeloma/genetics , Multiple Myeloma/pathology , Proteins/genetics , Apoptosis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cell Survival/genetics , Endoplasmic Reticulum Chaperone BiP , Gene Expression Profiling , Gene Knockout Techniques , Humans , Nucleotidyltransferases , Signal Transduction
12.
Mol Cell Proteomics ; 16(10): 1718-1735, 2017 10.
Article En | MEDLINE | ID: mdl-28550165

CLASP2 is a microtubule-associated protein that undergoes insulin-stimulated phosphorylation and co-localization with reorganized actin and GLUT4 at the plasma membrane. To gain insight to the role of CLASP2 in this system, we developed and successfully executed a streamlined interactome approach and built a CLASP2 protein network in 3T3-L1 adipocytes. Using two different commercially available antibodies for CLASP2 and an antibody for epitope-tagged, overexpressed CLASP2, we performed multiple affinity purification coupled with mass spectrometry (AP-MS) experiments in combination with label-free quantitative proteomics and analyzed the data with the bioinformatics tool Significance Analysis of Interactome (SAINT). We discovered that CLASP2 coimmunoprecipitates (co-IPs) the novel protein SOGA1, the microtubule-associated protein kinase MARK2, and the microtubule/actin-regulating protein G2L1. The GTPase-activating proteins AGAP1 and AGAP3 were also enriched in the CLASP2 interactome, although subsequent AGAP3 and CLIP2 interactome analysis suggests a preference of AGAP3 for CLIP2. Follow-up MARK2 interactome analysis confirmed reciprocal co-IP of CLASP2 and revealed MARK2 can co-IP SOGA1, glycogen synthase, and glycogenin. Investigating the SOGA1 interactome confirmed SOGA1 can reciprocal co-IP both CLASP2 and MARK2 as well as glycogen synthase and glycogenin. SOGA1 was confirmed to colocalize with CLASP2 and with tubulin, which identifies SOGA1 as a new microtubule-associated protein. These results introduce the metabolic function of these proposed novel protein networks and their relationship with microtubules as new fields of cytoskeleton-associated protein biology.


Intracellular Signaling Peptides and Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Protein Interaction Maps , 3T3 Cells/metabolism , Adipocytes/metabolism , Animals , Autophagy-Related Proteins , Computer Simulation , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Glucosyltransferases/metabolism , Glycogen/metabolism , Glycoproteins/metabolism , Humans , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Microtubule-Associated Proteins/genetics , Proteomics
13.
Biochem Biophys Res Commun ; 487(3): 545-551, 2017 06 03.
Article En | MEDLINE | ID: mdl-28414126

The VWA8 gene was first identified by the Kazusa cDNA project and named KIAA0564. Based on the observation, by similarity, that the protein encoded by KIAA0564 contains a Von Willebrand Factor 8 domain, KIAA0564 was named Von Willebrand Domain-containing Protein 8 (VWA8). The function of VWA8 protein is almost unknown. The purpose of this study was to characterize the tissue distribution, cellular location, and function of VWA8. In mice VWA8 protein was mostly distributed in liver, kidney, heart, pancreas and skeletal muscle, and is present as a long isoform and a shorter splice variant (VWA8a and VWA8b). VWA8 protein and mRNA were elevated in mouse liver in response to high fat feeding. Sequence analysis suggests that VWA8 has a mitochondrial targeting sequence and domains responsible for ATPase activity. VWA8 protein was targeted exclusively to mitochondria in mouse AML12 liver cells, and this was prevented by deletion of the targeting sequence. Moreover, the VWA8 short isoform overexpressed in insect cells using a baculovirus construct had in vitro ATPase activity. Deletion of the Walker A motif or Walker B motif in VWA8 mostly blocked ATPase activity, suggesting Walker A motif or Walker B motif are essential to the ATPase activity of VWA8. Finally, homology modeling suggested that VWA8 may have a structure most confidently similar to dynein motor proteins.


Adenosine Triphosphatases/metabolism , Extracellular Matrix Proteins/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphatases/genetics , Animals , Cells, Cultured , Computational Biology , Extracellular Matrix Proteins/chemistry , Extracellular Matrix Proteins/genetics , Gene Expression Profiling , Humans , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
BMC Cancer ; 16: 297, 2016 May 03.
Article En | MEDLINE | ID: mdl-27142104

BACKGROUND: Immunomodulatory drugs (IMiDs), such as lenalidomide, are therapeutically active compounds that bind and modulate the E3 ubiquitin ligase substrate recruiter cereblon, thereby affect steady-state levels of cereblon and cereblon binding partners, such as ikaros and aiolos, and induce many cellular responses, including cytotoxicity to multiple myeloma (MM) cells. Nevertheless, it takes many days for MM cells to die after IMiD induced depletion of ikaros and aiolos and thus we searched for other cereblon binding partners that participate in IMiD cytotoxicity. METHODS: Cereblon binding partners were identified from a MM cell line expressing histidine-tagged cereblon by pulling down cereblon and its binding partners and verified by co-immunoprecipitation. IMiD effects were determined by western blot analysis, cell viability assay, microRNA array and apoptosis analysis. RESULTS: We identified argonaute 2 (AGO2) as a cereblon binding partner and found that the steady-state levels of AGO2 were regulated by cereblon. Upon treatment of IMiD-sensitive MM cells with lenalidomide, the steady-state levels of cereblon were significantly increased, whereas levels of AGO2 were significantly decreased. It has been reported that AGO2 plays a pivotal role in microRNA maturation and function. Interestingly, upon treatment of MM cells with lenalidomide, the steady-state levels of microRNAs were significantly altered. In addition, silencing of AGO2 in MM cells, regardless of sensitivity to IMiDs, significantly decreased the levels of AGO2 and microRNAs and massively induced cell death. CONCLUSION: These results support the notion that the cereblon binding partner AGO2 plays an important role in regulating MM cell growth and survival and AGO2 could be considered as a novel drug target for overcoming IMiD resistance in MM cells.


Argonaute Proteins/biosynthesis , Cell Proliferation/genetics , Multiple Myeloma/genetics , Peptide Hydrolases/metabolism , Adaptor Proteins, Signal Transducing , Apoptosis/genetics , Argonaute Proteins/antagonists & inhibitors , Argonaute Proteins/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Lenalidomide , MicroRNAs/biosynthesis , Multiple Myeloma/pathology , Peptide Hydrolases/genetics , Protein Binding , Thalidomide/administration & dosage , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases
16.
Blood ; 124(4): 536-45, 2014 Jul 24.
Article En | MEDLINE | ID: mdl-24914135

Cereblon (CRBN) mediates immunomodulatory drug (IMiD) action in multiple myeloma (MM). Using 2 different methodologies, we identified 244 CRBN binding proteins and established relevance to MM biology by changes in their abundance after exposure to lenalidomide. Proteins most reproducibly binding CRBN (>fourfold vs controls) included DDB1, CUL4A, IKZF1, KPNA2, LTF, PFKL, PRKAR2A, RANGAP1, and SHMT2. After lenalidomide treatment, the abundance of 46 CRBN binding proteins decreased. We focused attention on 2 of these-IKZF1 and IKZF3. IZKF expression is similar across all MM stages or subtypes; however, IKZF1 is substantially lower in 3 of 5 IMiD-resistant MM cell lines. The cell line (FR4) with the lowest IKZF1 levels also harbors a damaging mutation and a translocation that upregulates IRF4, an IKZF target. Clinical relevance of CRBN-binding proteins was demonstrated in 44 refractory MM patients treated with pomalidomide and dexamethasone therapy in whom low IKZF1 gene expression predicted lack of response (0/11 responses in the lowest expression quartile). CRBN, IKZF1, and KPNA2 levels also correlate with significant differences in overall survival. Our study identifies CRBN-binding proteins and demonstrates that in addition to CRBN, IKZF1, and KPNA2, expression can predict survival outcomes.


Biomarkers, Tumor/metabolism , Carrier Proteins/metabolism , Drug Resistance, Neoplasm , Immunologic Factors/pharmacology , Multiple Myeloma/metabolism , Peptide Hydrolases/metabolism , Adaptor Proteins, Signal Transducing , Anti-Inflammatory Agents/pharmacology , Blotting, Western , Clinical Trials, Phase II as Topic , Dexamethasone/pharmacology , Flow Cytometry , Follow-Up Studies , Humans , Ikaros Transcription Factor/metabolism , Immunoprecipitation , Lenalidomide , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Prognosis , Prospective Studies , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Survival Rate , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Tumor Cells, Cultured , Ubiquitin-Protein Ligases , alpha Karyopherins/metabolism
17.
J Proteomics ; 75(13): 4017-26, 2012 Jul 16.
Article En | MEDLINE | ID: mdl-22609512

Tyrosine phosphorylation plays a fundamental role in many cellular processes including differentiation, growth and insulin signaling. In insulin resistant muscle, aberrant tyrosine phosphorylation of several proteins has been detected. However, due to the low abundance of tyrosine phosphorylation (<1% of total protein phosphorylation), only a few tyrosine phosphorylation sites have been identified in mammalian skeletal muscle to date. Here, we used immunoprecipitation of phosphotyrosine peptides prior to HPLC-ESI-MS/MS analysis to improve the discovery of tyrosine phosphorylation in relatively small skeletal muscle biopsies from rats. This resulted in the identification of 87 distinctly localized tyrosine phosphorylation sites in 46 muscle proteins. Among them, 31 appear to be novel. The tyrosine phosphorylated proteins included major enzymes in the glycolytic pathway and glycogen metabolism, sarcomeric proteins, and proteins involved in Ca(2+) homeostasis and phosphocreatine resynthesis. Among proteins regulated by insulin, we found tyrosine phosphorylation sites in glycogen synthase, and two of its inhibitors, GSK-3α and DYRK1A. Moreover, tyrosine phosphorylation sites were identified in several MAP kinases and a protein tyrosine phosphatase, SHPTP2. These results provide the largest catalogue of mammalian skeletal muscle tyrosine phosphorylation sites to date and provide novel targets for the investigation of human skeletal muscle phosphoproteins in various disease states.


Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Phosphoproteins/metabolism , Tyrosine/metabolism , Animals , Chromatography, High Pressure Liquid , Extracellular Signal-Regulated MAP Kinases/metabolism , Glycogen Synthase Kinase 3/metabolism , Humans , Male , Phosphopeptides/isolation & purification , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Dyrk Kinases
18.
J Proteomics ; 75(11): 3342-50, 2012 Jun 18.
Article En | MEDLINE | ID: mdl-22516431

Protein phosphatase 1 (PP1) is one of the major phosphatases responsible for protein dephosphorylation in eukaryotes. So far, only few specific phosphorylation sites of PP1 regulatory subunit 12A (PPP1R12A) have been shown to regulate the PP1 activity. The effect of insulin on PPP1R12A phosphorylation is largely unknown. Utilizing a mass spectrometry based phosphorylation identification and quantification approach, we identified 21 PPP1R12A phosphorylation sites (7 novel sites, including Ser20, Thr22, Thr453, Ser478, Thr671, Ser678, and Ser680) and quantified 16 of them under basal and insulin stimulated conditions in hamster ovary cells overexpressing the insulin receptor (CHO/IR), an insulin sensitive cell model. Insulin stimulated the phosphorylation of PPP1R12A significantly at Ser477, Ser478, Ser507, Ser668, and Ser695, while simultaneously suppressing the phosphorylation of PPP1R12A at Ser509 (more than 2-fold increase or decrease compared to basal). Our data demonstrate that PPP1R12A undergoes insulin stimulated/suppressed phosphorylation, suggesting that PPP1R12A phosphorylation may play a role in insulin signal transduction. The novel PPP1R12A phosphorylation sites as well as the new insulin-responsive phosphorylation sites of PPP1R12A in CHO/IR cells provide targets for investigation of the regulation of PPP1R12A and the PPP1R12A-PP1cδ complex in insulin action and other signaling pathways in other cell models, animal models, and humans.


Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Myosin-Light-Chain Phosphatase/metabolism , Receptor, Insulin/metabolism , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Myosin-Light-Chain Phosphatase/genetics , Phosphorylation/drug effects , Receptor, Insulin/genetics
19.
J Proteomics Bioinform ; 5(3): 60-66, 2012.
Article En | MEDLINE | ID: mdl-33907358

Nonalcoholic fatty liver disease (NAFLD) is associated with obesity, insulin resistance, type 2 diabetes, and dyslipidemia. The purpose of this study was to identify novel proteins and pathways that contribute to the pathogenesis and complications of NAFLD. C57BL/6J male mice were fed a 60% (HFD) or 10% (LFD) high or low fat diet. HFD induced obesity, hepatic steatosis and insulin resistance (euglycemic clamps, glucose infusion rate: LFD 50.5 ± 6.4 vs. HFD 14.2 ± 9.5 µg/ (g·min); n = 12). Liver proteins were analyzed by mass spectrometry-based proteomics analysis. Numerous hepatic proteins were altered in abundance after 60% HFD feeding. Nine down-regulated and nine up-regulated proteins were selected from this list for detailed analysis based on the criteria of 1.5-fold difference, consistency across replicates, and having at least 2 spectra assigned. Proteins that decreased in abundance were acyl-coA desaturase-I (SCD-1), acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), pyruvate kinase isozymes R/L (PKLR), NADP-dependent malic enzyme (ME-1), ATP-citrate synthase (ACL), ketohexokinase (KHK), long-chain-fatty acid-CoA ligase-5 (ACSL-5) and carbamoyl-phosphate synthase-I (CPS-1). Those that increased were KIAA0564, apolipoprotein A-I (apoA-1), ornithine aminotransferase (OAT), multidrug resistance protein 2 (MRP-2), liver carboxylesterase-I (CES-1), aminopeptidase N (APN), fatty aldehyde dehydrogenase (FALDH), major urinary protein 2 (MUP-2) and KIAA0664. KIAA0564 and KIAA0664 proteins are uncharacterized and are novel proteins associated with NAFLD. The decreased abundance of normally highly abundant proteins like FAS and CPS-1 was confirmed by Coomassie Blue staining after bands were identified by MS/MS, and immunoblot analysis confirmed the increased abundance of KIAA0664 after 60% HFD feeding. In conclusion, this study shows NAFLD is characterized by changes in abundance of proteins related to cell injury, inflammation, and lipid metabolism. Two novel and uncharacterized proteins, KIAA0564 and KIAA0664, may provide insight into the pathogenesis of NAFLD induced by lipid oversupply.

20.
PLoS One ; 6(10): e26171, 2011.
Article En | MEDLINE | ID: mdl-22022551

We sought to evaluate the reproducibility of a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based approach to measure the stable-isotope enrichment of in vivo-labeled muscle ATP synthase ß subunit (ß-F1-ATPase), a protein most directly involved in ATP production, and whose abundance is reduced under a variety of circumstances. Muscle was obtained from a rat infused with stable-isotope-labeled leucine. The muscle was homogenized, ß-F1-ATPase immunoprecipitated, and the protein was resolved using 1D-SDS PAGE. Following trypsin digestion of the isolated protein, the resultant peptide mixtures were subjected to analysis by HPLC-ESI-MS/MS, which resulted in the detection of multiple ß-F1-ATPase peptides. There were three ß-F1-ATPase unique peptides with a leucine residue in the amino acid sequence, and which were detected with high intensity relative to other peptides and assigned with >95% probability to ß-F1-ATPase. These peptides were specifically targeted for fragmentation to access their stable-isotope enrichment based on MS/MS peak areas calculated from extracted ion chromatographs for selected labeled and unlabeled fragment ions. Results showed best linearity (R(2) = 0.99) in the detection of MS/MS peak areas for both labeled and unlabeled fragment ions, over a wide range of amounts of injected protein, specifically for the ß-F1-ATPase(134-143) peptide. Measured stable-isotope enrichment was highly reproducible for the ß-F1-ATPase(134-143) peptide (CV = 2.9%). Further, using mixtures of synthetic labeled and unlabeled peptides we determined that there is an excellent linear relationship (R(2) = 0.99) between measured and predicted enrichment for percent enrichments ranging between 0.009% and 8.185% for the ß-F1-ATPase(134-143) peptide. The described approach provides a reliable approach to measure the stable-isotope enrichment of in-vivo-labeled muscle ß-F1-ATPase based on the determination of the enrichment of the ß-F1-ATPase(134-143) peptide.


Isotope Labeling/methods , Mitochondrial Proton-Translocating ATPases/metabolism , Muscles/enzymology , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acid Sequence , Animals , Chromatography, High Pressure Liquid , Male , Mitochondrial Proton-Translocating ATPases/chemistry , Molecular Sequence Data , Peptides/chemistry , Peptides/metabolism , Rats , Rats, Sprague-Dawley , Reproducibility of Results
...