Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Psychiatry ; 15: 1392958, 2024.
Article in English | MEDLINE | ID: mdl-38751414

ABSTRACT

Background: Pediatric cerebral palsy (CP) is a non-progressive brain injury syndrome characterized by central motor dysfunction and insufficient brain coordination ability. The etiology of CP is complex and often accompanied by diverse complications such as intellectual disability and language disorders, making clinical treatment difficult. Despite the availability of pharmacological interventions, rehabilitation programs, and spasticity relief surgery as treatment options for CP, their effectiveness is still constrained. Electroacupuncture (EA) stimulation has demonstrated great improvements in motor function, but its comprehensive, objective therapeutic effects on pediatric CP remain to be clarified. Methods: We present a case of a 5-year-old Chinese female child who was diagnosed with CP at the age of 4. The patient exhibited severe impairments in motor, language, social, and cognitive functions. We performed a 3-month period of EA rehabilitation, obtaining resting state functional magnetic resonance imaging (rs-fMRI) of the patient at 0 month, 3 months and 5 months since treatment started, then characterized brain functional connectivity patterns in each phase for comparison. Results: After a 12-month follow-up, notable advancements were observed in the patient's language and social symptoms. Changes of functional connectivity patterns confirmed this therapeutic effect and showed specific benefits for different recovery phase: starting from language functions then modulating social participation and other developmental behaviors. Conclusion: This is a pioneering report demonstrating the longitudinal effect of EA stimulation on functional brain connectivity in CP patients, suggesting EA an effective intervention for developmental disabilities (especially language and social dysfunctions) associated with pediatric CP.

2.
JCI Insight ; 9(7)2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38587080

ABSTRACT

BACKGROUNDAs Omicron is prompted to replicate in the upper airway, neutralizing antibodies (NAbs) delivered through inhalation might inhibit early-stage infection in the respiratory tract. Thus, elucidating the prophylactic efficacy of NAbs via nasal spray addresses an important clinical need.METHODSThe applicable potential of a nasal spray cocktail containing 2 NAbs was characterized by testing its neutralizing potency, synergetic neutralizing mechanism, emergency protective and therapeutic efficacy in a hamster model, and pharmacokinetics/pharmacodynamic (PK/PD) in human nasal cavity.RESULTSThe 2 NAbs displayed broad neutralizing efficacy against Omicron, and they could structurally compensate each other in blocking the Spike-ACE2 interaction. When administrated through the intranasal mucosal route, this cocktail demonstrated profound efficacy in the emergency prevention in hamsters challenged with authentic Omicron BA.1. The investigator-initiated trial in healthy volunteers confirmed the safety and the PK/PD of the NAb cocktail delivered via nasal spray. Nasal samples from the participants receiving 4 administrations over a course of 16 hours demonstrated potent neutralization against Omicron BA.5 in an ex vivo pseudovirus neutralization assay.CONCLUSIONThese results demonstrate that the NAb cocktail nasal spray provides a good basis for clinical prophylactic efficacy against Omicron infections.TRIAL REGISTRATIONwww.chictr.org.cn, ChiCTR2200066525.FUNDINGThe National Science and Technology Major Project (2017ZX10202203), the National Key Research and Development Program of China (2018YFA0507100), Guangzhou National Laboratory (SRPG22-015), Lingang Laboratory (LG202101-01-07), Science and Technology Commission of Shanghai Municipality (YDZX20213100001556), and the Emergency Project from the Science & Technology Commission of Chongqing (cstc2021jscx-fyzxX0001).


Subject(s)
Antibodies, Neutralizing , Nasal Sprays , Animals , Cricetinae , Humans , China , Trachea , Healthy Volunteers
3.
Materials (Basel) ; 16(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37629816

ABSTRACT

A glioma is the most common malignant primary brain tumor in adults and is categorized according to its growth potential and aggressiveness. Within gliomas, grade 4 glioblastoma remains one of the most lethal malignant solid tumors, with a median survival time less than 18 months. By encapsulating CPT-11 and oleic acid-coated magnetic nanoparticles (OMNPs) in poly(lactic-co-glycolic acid) (PLGA) nanoparticles, we first prepared PLGA@OMNP@CPT-11 nanoparticles in this study. After conjugating cetuximab (CET) with PLGA@OMNP@CPT-11, spherical PLGA@OMNP@CPT-11-CET nanoparticles with 250 nm diameter, 33% drug encapsulation efficiency, and 22% drug loading efficiency were prepared in a single emulsion/evaporation step. The nanoparticles were used for dual-targeted delivery of CPT-11 to U87 primary glioblastoma cells by actively targeting the overexpressed epidermal growth factor receptor on the surface of U87 cells, as well as by magnetic targeting. The physicochemical properties of nanoparticles were characterized in detail. CET-mediated targeting promotes intracellular uptake of nanoparticles by U87 cells, which can release four times more drug at pH 5 than at pH 7.4 to facilitate drug release in endosomes after intracellular uptake. The nanovehicle PLGA@OMNP-CET is cytocompatible and hemocompatible. After loading CPT-11, PLGA@OMNP@CPT-11-CET shows the highest cytotoxicity toward U87 compared with free CPT-11 and PLGA@OMNP@CPT-11 by providing the lowest drug concentration for half-maximal cell death (IC50) and the highest rate of cell apoptosis. In orthotopic brain tumor-bearing nude mice with U87 xenografts, intravenous injection of PLGA@OMNP@ CPT-11-CET followed by guidance with a magnetic field provided the best treatment efficacy with the lowest tumor-associated signal intensity from bioluminescence imaging.

4.
Genomics ; 114(2): 110302, 2022 03.
Article in English | MEDLINE | ID: mdl-35134494

ABSTRACT

The genetic origins of novelty are of central interest in evolutionary biology. ISG15 and UBA7 are present only in vertebrates. The emergence and evolution of them are not clear. Phylogenetic comparisons revealed that UBA7 descends from gene duplication, and ISG15 and UBA7 arose from UBB/UBC and UBA1, respectively. Uba7 exhibits ubiquitin-activation activity in fish but not tetrapods, suggesting that the relationship of ISG15/Uba7 was promiscuous in origin but was later coopted toward higher specificity. Zebrafish Uba7 is capable of activating the ubiquitin cascade in vitro and in vivo, and it displays distinct specificity preference toward substrates and E2 enzymes compared to zebrafish Uba1. These results together provide a framework for understanding the origin and diversification of ISG15/Uba7 and may serve as a paradigmatic example in which an originally minor functionality in an old gene is made into a new high-specificity protein through random mutations and natural selection.


Subject(s)
Ubiquitins , Zebrafish , Animals , Cytokines/genetics , Cytokines/metabolism , Phylogeny , Ubiquitin/genetics , Ubiquitin/metabolism , Ubiquitins/genetics , Ubiquitins/metabolism , Zebrafish/genetics
5.
Mol Cell ; 78(4): 641-652.e9, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32330457

ABSTRACT

Ubiquitination is essential for numerous eukaryotic cellular processes. Here, we show that the type III effector CteC from Chromobacterium violaceum functions as an adenosine diphosphate (ADP)-ribosyltransferase that specifically modifies ubiquitin via threonine ADP-ribosylation on residue T66. The covalent modification prevents the transfer of ubiquitin from ubiquitin-activating enzyme E1 to ubiquitin-conjugating enzyme E2, which inhibits subsequent ubiquitin activation by E2 and E3 enzymes in the ubiquitination cascade and leads to the shutdown of polyubiquitin synthesis in host cells. This unique modification also causes dysfunction of polyubiquitin chains in cells, thereby blocking host ubiquitin signaling. The disruption of host ubiquitination by CteC plays a crucial role in C. violaceum colonization in mice during infection. CteC represents a family of effector proteins in pathogens of hosts from different kingdoms. All the members of this family specifically ADP-ribosylate ubiquitin. The action of CteC reveals a new mechanism for interfering with host ubiquitination by pathogens.


Subject(s)
ADP-Ribosylation , Bacterial Proteins/metabolism , Chromobacterium/metabolism , Polyubiquitin/metabolism , Threonine/metabolism , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Animals , Bacterial Proteins/genetics , Chromobacterium/genetics , Female , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Protein Processing, Post-Translational , Threonine/genetics , Ubiquitin-Activating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitination
SELECTION OF CITATIONS
SEARCH DETAIL
...