Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Acta Biomater ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38815684

Osteoarthritis (OA) poses significant therapeutic challenges, particularly OA that affects the hand. Currently available treatment strategies are often limited in terms of their efficacy in managing pain, regulating invasiveness, and restoring joint function. The APRICOTⓇ implant system developed by Aurora Medical Ltd (Chichester, UK) introduces a minimally invasive, bone-conserving approach for treating hand OA (https://apricot-project.eu/). By utilizing polycarbonate urethane (PCU), this implant incorporates a caterpillar track-inspired design to promote the restoration of natural movement to the joint. Surface modifications of PCU have been proposed for the biological fixation of the implant. This study investigated the biocompatibility of PCU alone or in combination with two surface modifications, namely dopamine-carboxymethylcellulose (dCMC) and calcium-phosphate (CaP) coatings. In a rat soft tissue model, native and CaP-coated PCU foils did not increase cellular migration or cytotoxicity at the implant-soft tissue interface after 3 d, showing gene expression of proinflammatory cytokines similar to that in non-implanted sham sites. However, dCMC induced an amplified initial inflammatory response that was characterized by increased chemotaxis and cytotoxicity, as well as pronounced gene activation of proinflammatory macrophages and neoangiogenesis. By 21 d, inflammation subsided in all the groups, allowing for implant encapsulation. In a rat bone model, 6 d and 28 d after release of the periosteum, all implant types were adapted to the bone surface with a surrounding fibrous capsule and no protracted inflammatory response was observed. These findings demonstrated the biocompatibility of native and CaP-coated PCU foils as components of APRICOTⓇ implants. STATEMENT OF SIGNIFICANCE: Hand osteoarthritis treatments require materials that minimize irritation of the delicate finger joints. Differing from existing treatments, the APRICOTⓇ implant leverages polycarbonate urethane (PCU) for minimally invasive joint replacement. This interdisciplinary, preclinical study investigated the biocompatibility of thin polycarbonate urethane (PCU) foils and their surface modifications with calcium-phosphate (CaP) or dopamine-carboxymethylcellulose (dCMC). Cellular and morphological analyses revealed that both native and Ca-P coated PCU elicit transient inflammation, similar to sham sites, and a thin fibrous encapsulation in soft tissues and on bone surfaces. However, dCMC surface modification amplified initial chemotaxis and cytotoxicity, with pronounced activation of proinflammatory and neoangiogenesis genes. Therefore, native and CaP-coated PCU possess sought-for biocompatible properties, crucial for patient safety and performance of APRICOTⓇ implant.

2.
Methods Mol Biol ; 2763: 383-394, 2024.
Article En | MEDLINE | ID: mdl-38347428

Mucin glycoproteins are ideal biomacromolecules for drug delivery applications since they naturally offer a plethora of different functional groups that can engage in specific and unspecific binding interactions with cargo molecules. However, to fabricate drug carrier objects from mucins, suitable stabilization mechanisms have to be implemented into the nanoparticle preparation procedure that allow for drug release profiles that match the requirements of the selected cargo molecule and its particular mode of action. Here, we describe two different methods to prepare crosslinked mucin nanoparticles that can release their cargo either on-demand or in a sustained manner. This method chapter includes a description of the preparation and characterization of mucin nanoparticles (stabilized either with synthetic DNA strands or with covalent crosslinks generated by free radical polymerization), as well as protocols to quantify the release of a model drug from those nanoparticles.


Mucins , Nanoparticles , Mucins/metabolism , Drug Delivery Systems , Glycoproteins , Drug Carriers/chemistry , Nanoparticles/chemistry
3.
Int J Biol Macromol ; 215: 102-112, 2022 Aug 31.
Article En | MEDLINE | ID: mdl-35724899

Biopolymer-based drug carriers are commonly used for the development of safe delivery systems. However, biopolymer-based systems are often highly sensitive to the acidic pH levels in the stomach and release most of their cargo before they have reached their point of destination. Such premature drug release combined with the resulting high dose requirements is not cost-efficient and comes with the risk of unwanted side effects on non-target tissues/organs. This problem can be mitigated by the mucin-based drug carriers developed here, which exhibit good stability at acidic pH levels as proven by dynamic light scattering and enzymatic degradation tests with pepsin. In addition, the mucin-based particles can deliver hydrophobic and hydrophilic drugs simultaneously, which is demonstrated both with experiments performed under in vitro sink conditions and with drug transport tests involving eukaryotic cells as targets. As photo-induced cross-links covalently stabilize those particles, they can release their payload over time in a sustained manner. The drug carrier system introduced here combines good stability with high drug encapsulation efficiency and very good biocompatibility and thus may be valuable for a broad spectrum of applications in biological settings.


Mucins , Nanoparticles , Biopolymers/metabolism , Drug Carriers/chemistry , Drug Delivery Systems/methods , Drug Liberation , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Mucins/chemistry , Nanoparticles/chemistry
4.
Mater Today Bio ; 13: 100203, 2022 Jan.
Article En | MEDLINE | ID: mdl-35079700

With the "many-headed" slime mold Physarum polycelphalum having been voted the unicellular organism of the year 2021 by the German Society of Protozoology, we are reminded that a large part of nature's huge variety of life forms is easily overlooked - both by the general public and researchers alike. Indeed, whereas several animals such as mussels or spiders have already inspired many scientists to create novel materials with glue-like properties, there is much more to discover in the flora and fauna. Here, we provide an overview of naturally occurring slimy substances with adhesive properties and categorize them in terms of the main chemical motifs that convey their stickiness, i.e., carbohydrate-, protein-, and glycoprotein-based biological glues. Furthermore, we highlight selected recent developments in the area of material design and functionalization that aim at making use of such biological compounds for novel applications in medicine - either by conjugating adhesive motifs found in nature to biological or synthetic macromolecules or by synthetically creating (multi-)functional materials, which combine adhesive properties with additional, problem-specific (and sometimes tunable) features.

5.
J Control Release ; 339: 498-505, 2021 11 10.
Article En | MEDLINE | ID: mdl-34662584

Drug delivery systems that release hydrophobic drugs with zero-order kinetics remain rare and are often complicated to use. In this work, we present a gellified emulsion (emulgel) that comprises oil droplets of a hydrolyzable oil entrapped in a hydrogel. In the oil, we incorporate various hydrophobic drugs and, because the oil hydrolyzes with zero-order kinetics, the release of the drugs is also linear. We tune the release period from three hours to 50 h by varying the initial oil concentration. We show that the release rate is tunable by varying the initial drug concentration. Our quantitative understanding of the system allows for predicting the drug release kinetics once the drug's partition coefficient between the oil and the aqueous phase is known. Finally, we show that our drug delivery system is fully functional after storing it at -20 °C. Cell viability studies show that the hydrolyzable oil and its hydrolysis product are non-toxic under the employed conditions. With its simplicity and versatility, our system is a promising platform for the zero-order release of the drug.


Oils , Water , Drug Liberation , Emulsions , Hydrophobic and Hydrophilic Interactions
6.
Adv Healthc Mater ; 10(4): e2000831, 2021 02.
Article En | MEDLINE | ID: mdl-32940004

Even though medical devices have improved a lot over the past decades, there are still issues regarding their anti-biofouling properties and tribological performance, and both aspects contribute to the short- and long-term failure of these devices. Coating these devices with a biocompatible layer that reduces friction, wear, and biofouling at the same time would be a promising strategy to address these issues. Inspired by the adhesion mechanism employed by mussels, here, dopamine is made use of to immobilize lubricious mucin macromolecules onto both manufactured commercial materials and real medical devices. It is shown that purified mucins successfully adsorb onto a dopamine pre-coated substrate, and that this double-layer is stable toward mechanical challenges and storage in aqueous solutions. Moreover, the results indicate that the dopamine/mucin double-layer decreases friction (especially in the boundary lubrication regime), reduces wear damage, and provides anti-biofouling properties. The results obtained in this study show that such dopamine/mucin double-layer coatings can be powerful candidates for improving the surface properties of medical devices such as catheters, stents, and blood vessel substitutes.


Dopamine , Mucins , Friction , Lubrication , Surface Properties
7.
Langmuir ; 36(43): 12973-12982, 2020 11 03.
Article En | MEDLINE | ID: mdl-33090801

Mucin glycoproteins are the matrix-forming key components of mucus, the innate protective barrier protecting us from pathogenic attack. However, this barrier is constantly challenged by mucin-degrading enzymes, which tend to target anionic glycan chains such as sulfate groups and sialic acid residues. Here, we demonstrate that the efficiency of both unspecific and specific binding of small molecules to mucins is reduced when sulfate groups are enzymatically removed from mucins; this is unexpected because neither of the specific mucin-binding partners tested here targets these sulfate motifs on the mucin glycoprotein. Based on simulation results obtained from a numerical model of the mucin macromolecule, we propose that anionic motifs along the mucin chain establish intramolecular repulsion forces which maintain an elongated mucin conformation. In the absence of these repulsive forces, the mucin seems to adopt a more compacted structure, in which the accessibility of several binding sites is restricted. Our results contribute to a better understanding on how different glycans contribute to the broad spectrum of functions mucin glycoproteins have.

8.
Colloids Surf B Biointerfaces ; 187: 110614, 2020 Mar.
Article En | MEDLINE | ID: mdl-31753616

In the human body, mucin glycoproteins efficiently reduce friction between tissues and thereby protect the mucosa from mechanical damage. Mucin lubricity is closely related to their molecular structure: it has been demonstrated previously that the hydrophobic termini of mucins critically contribute to their lubricity. If and how intrinsic sources of negative charge in mucins, e.g., sulfated glycans and sialic acid residues, are relevant for the tribological behavior of mucin solutions has, however, not been addressed yet. In this manuscript, we show that the removal of either sialic acid or sulfate groups, which comprise only a minor amount of the total molecular weight, from MUC5B drastically reduces its lubricity. For MUC5AC solutions, however, this effect only occurs once mucin-associated DNA is removed as well. We find that neither the hydration state nor the average conformation of mucins adsorbed onto hydrophilic or hydrophobic surfaces is affected by the removal of anionic sugars. Instead, our data suggests that a loss of anionic sugars mainly influences the dynamic adsorption process of mucins onto both hydrophilic and hydrophobic surfaces.


Lubrication , Mucins/chemistry , Polysaccharides/chemistry , Adsorption , Animals , Anions , Graphite/chemistry , Hydrophobic and Hydrophilic Interactions , N-Acetylneuraminic Acid/chemistry , Protein Conformation , Solutions , Sulfates/chemistry , Swine , Water/chemistry
...