Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Plant Cell Environ ; 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38629794

Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level, and consequently affecting the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.

2.
Int J Mol Sci ; 23(14)2022 Jul 08.
Article En | MEDLINE | ID: mdl-35886923

Excessive input of nitrogen fertilizer not only causes a great waste of resources but brings about a series of ecological and environmental problems. Although Small Auxin Up-regulated RNAs (SAURs) participate in diverse biological processes, the function of SAURs in the nitrogen starvation response has not been well-studied. Here, we identified 308 TaSAURs in wheat and divided them into 10 subfamilies. The promoter regions of most TaSAURs contain hormone responsive elements, and their expression levels change under the treatment of different hormones, such as IAA, MeJA, and ABA. Interestingly, overexpression of one of the TaSAUR family members, a nitrogen starvation responsive gene, TaSAUR66-5B, can promote the growth of Arabidopsis and wheat roots. In addition, overexpression of TaSAUR66-5B in Arabidopsis up-regulates the expression levels of auxin biosynthesis related genes, suggesting that overexpression TaSAUR66-5B may promote root growth by increasing the biosynthesis of auxin. Furthermore, overexpression of TaSAUR66-5B in wheat can increase the biomass and grain yields of transgenic plants, as well as the nitrogen concentration and accumulation of both shoots and grains, especially under low nitrogen conditions. This study provides important genomic information of the TaSAUR gene family and lays a foundation for elucidating the functions of TaSAURs in improving nitrogen utilization efficiency in wheat.


Arabidopsis , Triticum , Arabidopsis/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Nitrogen/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Triticum/metabolism
...