Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Trop ; 259: 107376, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39218380

ABSTRACT

BACKGROUND: The emergence of insecticide resistance and its spread through populations of malaria vectors has decreased the number of insecticides available for control. Insecticide resistance has been observed in vector populations across sub-Saharan Africa in malaria endemic areas. Therefore, new compounds with different modes of action are needed that can be used in the management of resistance. The current study assessed the bioefficacy of the new indoor residual spray formulation, VECTRON™ T500 against Klypson 500 WG and water against laboratory reared and wild populations of Anopheles gambiae s.l.. The comparative experimental hut trial was implemented between June 2022 and December 2022 to determine the efficacy of VECTRON™ T500, containing the active ingredient (ai) broflanilide as a 50 % wettable powder (WP). The efficacy of VECTRON™ T500 was compared with a positive control, Klypson 500 WG, a wettable granule (WG) formulation that contains 50 % clothianidin. Cement and mud walls were sprayed with VECTRON™ T500, Klypson 500 WG with water sprayed as a negative control. The two insecticides and negative control were evaluated monthly for six months against laboratory and the field-derived An. gambiae s.l. using the standard WHO cone bioassays. Each wall had two cones on each day of testing. VECTRON™ T500 was sprayed on both surface types at a rate of 100mg ai/m2 whilst Klypson 500 WG was applied at a rate of 300 mg ai/m2. For both wall surface types, the vector from the laboratory-reared and the wild populations exhibited a low knockdown effect to both VECTRON™ T500 and Klypson 500 WG. A total of 3,840 mosquitoes were used of which 2,880 (75 %) were susceptible colony of An. gambiae s.s. and 960 (25 %) were wild An. gambiae s.l.. The VECTRON™ T500 induced a mortality of 97.8 %-98.1 % in the laboratory population and 83.2-95.0 % wild population mosquitoes on cement and mud-walled huts respectively while Klypson 500 WG ranged from 89.6-99.0 % for wild and 99.0-99.3 % for the laboratory population mosquitoes on cement and mud walls respectively. The knockdown due to VECTRON™ T500 was 7.08 % in the sixth month, while for Klypson 500 WG was 16.04-17.50 %. The monthly wall cone bioassay mortality with VECTRON™ T500 remained over 80 % for 6 months post-spraying for both laboratory and wild populations. The findings of this study have shown VECTRON™ T500 to have extended efficacy against malaria vector mosquitoes when applied to cement and mud walls. The evaluated new IRS formulation, VECTRON™ T500, performed equally with the positive control, Klypson 500 WG, regarding its impact on vector mortality.


Subject(s)
Anopheles , Insecticides , Mosquito Control , Mosquito Vectors , Animals , Anopheles/drug effects , Insecticides/pharmacology , Insecticides/administration & dosage , Mosquito Control/methods , Mosquito Vectors/drug effects , Female , Malaria/prevention & control , Malaria/transmission , Housing , Insecticide Resistance
2.
J Med Entomol ; 57(3): 933-938, 2020 05 04.
Article in English | MEDLINE | ID: mdl-31923308

ABSTRACT

The scaling-up of malaria control interventions in northern Tanzania has resulted in a decline in malaria prevalence and vector species composition. Despite this achievement, residual malaria transmission remains a concern in the area. The main aim of this study was to investigate malaria vector species composition, parasite infectivity rates, and the presence of insecticide knockdown resistance (kdr) mutations in three sites that have experienced a significant decline in malaria in northern Tanzania. Adult mosquitoes were sampled using light traps in houses and hand-aspirators in cowsheds, whereas the standard dipping method was used for sampling mosquito larvae. Adult mosquitoes identified as Anopheles gambiae s.l. and An. funestus s.l. and larval stages III and IV of An. gambiae s.l. were stored in absolute ethanol for further laboratory molecular identification. The identified species in the An. gambiae complex were An. gambiae s.s., An. merus, An. quadriannulatus, and An. arabiensis, whereas the An. funestus group comprised An. funestus s.s., An. rivulorum, and An. leesoni. For An. gambiae s.s. analyzed from Zeneth, 47.6% were kdr-East homozygous susceptible, 35.7% kdr-East heterozygous resistant, 9.6% kdr-East homozygous resistant, and 7.1% undefined, whereas specimens from Kwakibuyu were 45.5% kdr-East homozygous susceptible, 32.7% kdr-East heterozygous resistant, 16.3% kdr-East homozygous resistant, and 5.5% undefined. There were no kdr-West alleles identified from any specimen. The overall malaria parasite infectivity rate was 0.75%. No infections were found in Moshi. The findings indicate that populations of the major malaria vector mosquitoes are still present in the study area, with An. funestus taking a lead in malaria transmission.


Subject(s)
Anopheles/physiology , Biodiversity , Insect Proteins/genetics , Insecticide Resistance/genetics , Mosquito Vectors/physiology , Animals , Anopheles/drug effects , Anopheles/growth & development , Mosquito Vectors/drug effects , Mosquito Vectors/growth & development , Mutation , Tanzania
3.
Malar J ; 18(1): 335, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31570107

ABSTRACT

BACKGROUND: The decline in malaria cases and vectors is major milestone in fighting against malaria. The efficacy of MAGNet long-lasting insecticidal nets (MAGNet LLIN), an alpha-cypermethrin incorporated long-lasting net, with the target dose ± 25% of 5.8 g active ingredient (AI)/kg (4.35-7.25 g AI/kg) was evaluated in six veranda-trap experimental huts in Muheza, Tanzania against freely flying wild population of Anopheles funestus. METHODS: MAGNet LLINs were tested against wild, free-flying, host-seeking An. funestus mosquitoes over a period of 6 weeks (total of 36 nights in the huts). MAGNet LLIN efficacy was determined in terms of mosquito mortality, blood-feeding inhibition, deterrence, induced exiting, personal protection, and insecticidal killing over 20 washes according to WHO standardized procedures. Efficacy was compared with reference to a WHOPES recommended approved LLINs (DuraNet) and to a net conventionally treated (CTN) treated with alpha-cypermethrin at WHO-recommended dose and washed to just before cut-off point. The efficacy of MAGNet was evaluated in experimental huts against wild, free-flying, pyrethroid-resistant An. funestus. The WHO-susceptibility method was used to detect resistance in wild Anopheles exposed to 0.75% permethrin. Mosquito mortality, blood-feeding inhibition and personal protection were compared between untreated nets and standard LLINs. Blood-feeding rates were recorded and compared between the 20 times washed; blood-feeding rates between 20 times washed MAGNet LLIN and 20 times washed WHOPES-approved piperonyl butoxide (PBO)/pyrethroid were not statistically different (p > 0.05). RESULTS: The results have evidently shown that MAGNet LLIN provides similar blood-feeding inhibition, exophily, mortality, and deterrence to the standard approved LLIN, thus meeting the WHOPES criteria for blood feeding. The significantly high feeding inhibition and personal protection over pyrethroid-resistant An. funestus recorded by both unwashed and 20 times washed MAGNet compared to the unwashed DuraNet, the WHOPES-approved standard pyrethroid-only LLIN provides proof of MAGNet meeting Phase II WHOPES criteria for a LLIN. CONCLUSION: Based on this study, MAGNet has been shown to have a promising impact on protection when 20 times washed against a highly resistant population of An. funestus.


Subject(s)
Anopheles , Insecticide-Treated Bednets , Insecticides , Laundering , Pyrethrins , Animals , Housing , Insecticide Resistance , Mosquito Control/instrumentation , Tanzania
4.
Trop Med Health ; 46: 36, 2018.
Article in English | MEDLINE | ID: mdl-30410416

ABSTRACT

BACKGROUND: Mosquitoes have developed resistance to multiple classes of insecticides for malaria vector control. A new generation of long-lasting insecticidal bed nets (LLINs) has been developed with increased efficacy against these resistant mosquitoes. The present study therefore evaluated the efficacy of the pyrethroid-based LLINs, DuraNet versus PermaNet 3.0, in an Eastern Africa hut design in Magugu in northern Tanzania where mosquitoes' population higher proportion (69.3%) has been identified as Anopheles gambiae s.l. METHODS: Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area with high populations of Anopheles arabiensis. All nets used were subjected to laboratory cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition, and personal protection rate were compared between untreated nets, unwashed LN, and LN that were washed 20 times. RESULTS: Standard WHO laboratory bioefficacy evaluations of DuraNet and PermaNet® 3.0 which were untreated, washed, or 20 times washed showed optimal knockdown and mortality for both net types against a susceptible strain of An. arabiensis. In standard experimental hut evaluations, the blood feeding inhibition for PermaNet® 3.0 unwashed and washed was 82.4% (76.3-88.6%) to 91.5% (84.1-98.8%) while for DuraNet was 98.3% (97.0-99.5%) to 96.0% (94.1-88.2%) respectively. The DuraNet LLINs showed a significantly higher killing effect than the other treatment of 90.0% (86.1-94.2%) and 94.0% (90.2-97.9%) for unwashed and washed nets respectively. No significant difference in deterrence or induced exophily was detected between the treatment arms. There were no adverse effects reported among sleepers in the experimental huts. CONCLUSION: The findings of this study indicate that the pyrethroid-based net DuraNet LLINs attained required efficacy when evaluated against wild population of An. arabiensis from Northern Tanzania. This adds value to the existing vector control tool box which gives community wider choice for vector control.

5.
Infect Dis Poverty ; 6(1): 11, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-28095897

ABSTRACT

BACKGROUND: Mosquitoes have developed resistance against pyrethroids, the only class of insecticides approved for use on long-lasting insecticidal nets (LLINs). The present study sought to evaluate the efficacy of the pyrethroid synergist PermaNet® 3.0 LLIN versus the pyrethroid-only PermaNet® 2.0 LLIN, in an East African hut design in Lower Moshi, northern Tanzania. In this setting, resistance to pyrethroid insecticides has been identified in Anopheles gambiae mosquitoes. METHODS: Standard World Health Organization bioefficacy evaluations were conducted in both laboratory and experimental huts. Experimental hut evaluations were conducted in an area where there was presence of a population of highly pyrethroid-resistant An. arabiensis mosquitoes. All nets used were subjected to cone bioassays and then to experimental hut trials. Mosquito mortality, blood-feeding inhibition and personal protection rate were compared between untreated nets, unwashed LLINs and LLINs that were washed 20 times. RESULTS: Both washed and unwashed PermaNet® 2.0 and PermaNet® 3.0 LLINs had knockdown and mortality rates of 100% against a susceptible strain of An. gambiae sensu stricto. The adjusted mortality rate of the wild mosquito population after use of the unwashed PermaNet® 3.0 and PermaNet® 2.0 nets was found to be higher than after use of the washed PermaNet® 2.0 and PermaNet® 3.0 nets. CONCLUSIONS: Given the increasing incidence of pyrethroid resistance in An. gambiae mosquitoes in Tanzania, we recommend that consideration is given to its distribution in areas with pyrethroid-resistant malaria vectors within the framework of a national insecticide-resistance management plan.


Subject(s)
Anopheles , Insecticide Resistance , Insecticide-Treated Bednets/standards , Insecticides , Mosquito Control/instrumentation , Pyrethrins , Animals , Tanzania
6.
Parasit Vectors ; 7: 426, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25190294

ABSTRACT

BACKGROUND: Alternative insecticidal compounds with mortality effect against mosquito life cycle stages are currently needed. The compounds should be biodegradable and nontoxic to non-targeted insects. Plant based larvicides provide effective control of vector populations. This study explored Cryptomeria japonica leaf essential oil larvicidal potency against Anopheles gambiae sensu stricto. METHODS: Essential oils (12.5 to 200 µg/mL) extracted from C. japonica leaves were evaluated against An. gambiae s.s. larvae in both the laboratory and semi field in 6 replicates for each dose. Larval mortality readings were taken at 12, 24, 48, and 72 h post treatment. RESULTS: C. japonica leaf essential oil yield was 17.06 ± 0.56 mL/kg and 1.60 ± 0.33% (w/w). GC-FID and GC-MS analyses revealed 22 constituents. Essential oil was more effective against An. gambiae s.s. larvae in the laboratory than in semi field trials. Mortality increased with increasing dosages (12.5 to 200 µg/mL) in the laboratory (31.75 to 100%) and semi field trials (17.75 to 99.5%), respectively. The LC50 value ranged from 5.55 to 63.92 µg/mL in the laboratory, and 8.22 to 134.84 µg/mL in semi field conditions, LC90 value ranged from 41.34 to 205.93 µg/mL in the laboratory and 50.92 to 213.11 µg/mL in semi field conditions. CONCLUSION: This study has demonstrated the potential of C. japonica leaf essential oil to cause mortality effects to An. gambiae s. s. larval populations, however, further studies need to be conducted under field conditions and also with individual active compounds of C. japonica essential oil.


Subject(s)
Anopheles/drug effects , Cryptomeria/drug effects , Insecticides/pharmacology , Oils, Volatile/pharmacology , Plant Leaves/chemistry , Plant Oils/pharmacology , Animals , Biological Assay , Insecticides/chemistry , Larva/drug effects , Oils, Volatile/chemistry , Plant Oils/chemistry
7.
Parasit Vectors ; 7: 211, 2014 May 03.
Article in English | MEDLINE | ID: mdl-24885903

ABSTRACT

BACKGROUND: Mosquito larval control using chemicals and biological agents is of paramount importance in vector population and disease incidence reduction. A commercial synthetic disinfectant soap was evaluated against larvae of Anopheles gambiae s.s. in both laboratory and semi field conditions. METHOD: Five concentrations of commercial synthetic disinfectant soap (0.0001, 0.001, 0.01, 0.1 and 1%) were prepared and evaluated against third instar larvae in laboratory and semi field environments. Mortality was scored at 12, 24, 48, and 72 hrs. Each dosage had 6 replicates, having twenty 3rd instar larvae of An.gambiae s.s. RESULTS: In the laboratory phase, all dosages had significantly higher larval mortalities than in controls, while in semi field conditions, the dosages of 0.0001, 0.001 and 0.01% had lower mortalities than laboratory trials. In the comparison between semi field and laboratory trials, only 0.1 and 1% dosage had significant difference with more mortality in semifield conditions. Proportions of larvae that died during mortality monitoring intervals in laboratory and semi field had significant differences only at 12 hrs and 72 hrs. CONCLUSION: The findings of this study have demonstrated that the mortality of larvae caused by commercial synthetic disinfectant soap is worth further studies in open water bodies. More studies are necessary to find out the effect of sunlight on the chemistry of the synthetic disinfectant and other variables in small scale full field trials.


Subject(s)
Anopheles/drug effects , Disinfectants/pharmacology , Insecticides/pharmacology , Soaps/pharmacology , Animals , Disinfectants/administration & dosage , Dose-Response Relationship, Drug , Insecticides/administration & dosage , Larva/drug effects , Soaps/administration & dosage , Time Factors
8.
J Glob Infect Dis ; 2(2): 121-3, 2010 May.
Article in English | MEDLINE | ID: mdl-20606966

ABSTRACT

AIM: The host-response to hematophagus insects is still an important parameter in understanding disease transmission patterns. We investigated the feeding and mortality rates of three mosquito species, namely Culex quinquefasciatus, Aedes aegypti and Anopheles arabiensis against three different hosts. MATERIALS AND METHODS: Unfed three to five-day-old female mosquitoes were released in a tunnel box that had a rabbit or guinea pig or mice as a host. The feeding succession patterns of mosquitoes in different hosts were An. arabiensis, Cx. quinquefasciatus and A. aegypti. RESULTS: Mosquito mortality rate was 54.9% for mosquitoes introduced in mice as a host, 34.3% in the Guinea pig and 10.8% for those that introduced in the rabbit. CONCLUSION: The presence of defensive and tolerable hosts in environment emphasizes the relevance of studying epidemiological impact of these behaviors in relation to diseases transmission.

SELECTION OF CITATIONS
SEARCH DETAIL