Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 52(5): 355-367, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38485280

ABSTRACT

Organic anion transporting polypeptide (OATP) 1B1 and OATP1B3 (collectively, OATP1B) transporters encoded by the solute carrier organic anion transporter (SLCO) genes mediate uptake of multiple pharmaceutical compounds. Nonalcoholic steatohepatitis (NASH), a severe form of nonalcoholic fatty liver disease (NAFLD), decreases OATP1B abundance. This research characterized the pathologic and pharmacokinetics effects of three diet- and one chemical-induced NAFLD model in male and female humanized OATP1B mice, which comprises knock-out of rodent Oatp orthologs and insertion of human SLCO1B1 and SLCO1B3. Histopathology scoring demonstrated elevated steatosis and inflammation scores for all NAFLD-treatment groups. Female mice had minor changes in SLCO1B1 expression in two of the four NAFLD treatment groups, and pitavastatin (PIT) area under the concentration-time curve (AUC) increased in female mice in only one of the diet-induced models. OATP1B3 expression decreased in male and female mice in the chemical-induced NAFLD model, with a coinciding increase in PIT AUC, indicating the chemical-induced model may better replicate changes in OATP1B3 expression and OATP substrate disposition observed in NASH patients. This research also tested a reported multifactorial pharmacokinetic interaction between NAFLD and silymarin, an extract from milk thistle seeds with notable OATP-inhibitory effects. Males showed no change in PIT AUC, whereas female PIT AUC increased 1.55-fold from the diet alone and the 1.88-fold from the combination of diet with silymarin, suggesting that female mice are more sensitive to pharmacokinetic changes than male mice. Overall, the humanized OATP1B model should be used with caution for modeling NAFLD and multifactorial pharmacokinetic interactions. SIGNIFICANCE STATEMENT: Advanced stages of NAFLD cause decreased hepatic OATP1B abundance and increase systemic exposure to OATP substrates in human patients. The humanized OATP1B mouse strain may provide a clinically relevant model to recapitulate these observations and predict pharmacokinetic interactions in NAFLD. This research characterized three diet-induced and one drug-induced NAFLD model in a humanized OATP1B mouse model. Additionally, a multifactorial pharmacokinetic interaction was observed between silymarin and NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Organic Anion Transporters , Silymarin , Humans , Male , Female , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Mice, Transgenic , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Liver-Specific Organic Anion Transporter 1/metabolism , Liver/metabolism , Organic Anion Transporters/metabolism , Membrane Transport Proteins/metabolism , Silymarin/metabolism , Drug Interactions
2.
Mol Pharm ; 21(5): 2284-2297, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38529622

ABSTRACT

Organic anion-transporting polypeptides (OATP) 1B1 and OATP1B3, encoded by the SLCO gene family of the solute carrier superfamily, are involved in the disposition of many exogenous and endogenous compounds. Preclinical rodent models help assess risks of pharmacokinetic interactions, but interspecies differences in transporter orthologs and expression limit direct clinical translation. An OATP1B transgenic mouse model comprising a rodent Slco1a/1b gene cluster knockout and human SLCO1B1 and SLCO1B3 gene insertions provides a potential physiologically relevant preclinical tool to predict pharmacokinetic interactions. Pharmacokinetics of exogenous probe substrates, pitavastatin and pravastatin, and endogenous OATP1B biomarkers, coproporphyrin-I and coproporphyrin-III, were determined in the presence and absence of known OATP/Oatp inhibitors, rifampin or silymarin (an extract of milk thistle [Silybum marianum]), in wild-type FVB mice and humanized OATP1B mice. Rifampin increased exposure of pitavastatin (4.6- and 2.8-fold), pravastatin (3.6- and 2.2-fold), and coproporphyrin-III (1.6- and 2.1-fold) in FVB and OATP1B mice, respectively, but increased coproporphyrin-I AUC0-24h only (1.8-fold) in the OATP1B mice. Silymarin did not significantly affect substrate AUC, likely because the silymarin flavonolignan concentrations were at or below their reported IC50 values for the relevant OATPs/Oatps. Silymarin increased the Cmax of pitavastatin 2.7-fold and pravastatin 1.9-fold in the OATP1B mice. The data of the OATP1B mice were similar to those of the pitavastatin and pravastatin clinical data; however, the FVB mice data more closely recapitulated pitavastatin clinical data than the data of the OATP1B mice, suggesting that the OATP1B mice are a reasonable, though costly, preclinical strain for predicting pharmacokinetic interactions when doses are optimized to achieve clinically relevant plasma concentrations.


Subject(s)
Drug Interactions , Liver-Specific Organic Anion Transporter 1 , Mice, Transgenic , Pravastatin , Rifampin , Silymarin , Solute Carrier Organic Anion Transporter Family Member 1B3 , Animals , Rifampin/pharmacokinetics , Mice , Liver-Specific Organic Anion Transporter 1/genetics , Liver-Specific Organic Anion Transporter 1/metabolism , Humans , Silymarin/pharmacokinetics , Pravastatin/pharmacokinetics , Pravastatin/administration & dosage , Solute Carrier Organic Anion Transporter Family Member 1B3/genetics , Solute Carrier Organic Anion Transporter Family Member 1B3/metabolism , Quinolines/pharmacokinetics , Coproporphyrins/metabolism , Male , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism
3.
Pharm Res ; 41(3): 557-566, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38302834

ABSTRACT

PURPOSE: Green tea is a widely consumed beverage. A recent clinical study reported green tea decreased systemic exposure of raloxifene and its glucuronide metabolites by 34-43%. However, the underlying mechanism(s) remains unknown. This study investigated a change in raloxifene's solubility as the responsible mechanism. METHODS: The effects of green tea extract, (-)-epigallocatechin gallate (EGCG), and (-)-epigallocatechin (EGC) on raloxifene's solubility were assessed in fasted state simulated intestinal fluids (FaSSIF) and fed state simulated intestinal fluids (FeSSIF). EGCG and EGC represent green tea's main bioactive constituents, flavan-3-gallate and flavan-3-ol catechins respectively, and the tested concentrations (mM) match the µg/mg of each compound in the extract. Our mouse study (n = 5/time point) evaluated the effect of green tea extract and EGCG on the systemic exposure of raloxifene. RESULTS: EGCG (1 mM) and EGC (1.27 mM) decreased raloxifene's solubility in FaSSIF by 78% and 13%, respectively. Micelle size in FaSSIF increased with increasing EGCG concentrations (> 1000% at 1 mM), whereas EGC (1.27 mM) did not change micelle size. We observed 3.4-fold higher raloxifene solubility in FeSSIF compared to FaSSIF, and neither green tea extract nor EGCG significantly affected raloxifene solubility or micelle size in FeSSIF. The mice study showed that green tea extract significantly decreased raloxifene Cmax by 44%, whereas EGCG had no effect. Green tea extract and EGCG did not affect the AUC0-24 h of raloxifene or the metabolite-to-parent AUC ratio. CONCLUSIONS: This study demonstrated flavan-3-gallate catechins may decrease solubility of poorly water-soluble drugs such as raloxifene, particularly in the fasted state.


Subject(s)
Catechin , Tea , Mice , Animals , Catechin/analysis , Catechin/metabolism , Catechin/pharmacology , Raloxifene Hydrochloride/pharmacology , Solubility , Micelles , Antioxidants , Plant Extracts/pharmacology
4.
Drug Metab Dispos ; 51(11): 1483-1489, 2023 11.
Article in English | MEDLINE | ID: mdl-37562957

ABSTRACT

Goldenseal is a perennial plant native to eastern North America. A recent clinical study reported goldenseal decreased metformin Cmax and area under the blood concentration versus time curve (AUC) by 27% and 23%, respectively, but half-life and renal clearance were unchanged. These observations suggested goldenseal altered processes involved in metformin absorption. The underlying mechanism(s) remain(s) unknown. One mechanism for the decreased metformin systemic exposure is inhibition by goldenseal of intestinal uptake transporters involved in metformin absorption. Goldenseal extract and three goldenseal alkaloids (berberine, (-)-ß-hydrastine, hydrastinine) were tested as inhibitors of organic cation transporter (OCT) 3, plasma membrane monoamine transporter (PMAT), and thiamine transporter (THTR) 2 using human embryonic kidney 293 cells overexpressing each transporter. The goldenseal extract, normalized to berberine content, was the strongest inhibitor of each transporter (IC50: 4.9, 13.1, and 5.8 µM for OCT3, PMAT, and THTR2, respectively). A pharmacokinetic study in mice compared the effects of berberine, (-)-ß-hydrastine, goldenseal extract, and imatinib (OCT inhibitor) on orally administered metformin. Goldenseal extract and imatinib significantly decreased metformin Cmax by 31% and 25%, respectively, and had no effect on half-life. Berberine and (-)-ß-hydrastine had no effect on metformin pharmacokinetics, indicating neither alkaloid alone precipitated the interaction in vivo. A follow-up murine study involving intravenous metformin and oral inhibitors examined the contributions of basolateral enteric/hepatic uptake transporters to the goldenseal-metformin interaction. Goldenseal extract and imatinib had no effect on metformin AUC and half-life, suggesting lack of inhibition of basolateral enteric/hepatic uptake transporters. Results may have implications for patients taking goldenseal with drugs that are substrates for OCT3 and THTR2. SIGNIFICANCE STATEMENT: Goldenseal is used to self-treat respiratory infections and digestive disorders. We investigated potential mechanisms for the clinical pharmacokinetic interaction observed between goldenseal and metformin, specifically inhibition by goldenseal of intestinal uptake transporters (OCT3, PMAT, THTR2) involved in metformin absorption. Goldenseal extract inhibited all three transporters in vitro and decreased metformin systemic exposure in mice. These data may have broader implications for patients co-consuming goldenseal with other drugs that are substrates for these transporters.


Subject(s)
Alkaloids , Berberine , Hydrastis , Metformin , Humans , Animals , Mice , Metformin/pharmacokinetics , Hydrastis/chemistry , Imatinib Mesylate , Membrane Transport Proteins , Organic Cation Transport Proteins/metabolism
5.
Int J Mol Sci ; 24(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37446360

ABSTRACT

Microcystin-leucine arginine (MCLR) is one of the most common and toxic microcystin variants, a class of cyanotoxins produced by cyanobacteria. A major molecular mechanism for MCLR-elicited liver toxicity involves the dysregulation of protein phosphorylation through protein phosphatase (PP) inhibition and mitogen-activated protein kinase (MAPK) modulation. In this study, specific pharmacological MAPK inhibitors were used in HepaRG cells to examine the pathways associated with MCLR cytotoxicity. SB203580 (SB), a p38 inhibitor, rescued HepaRG cell viability, whereas treatment with SP600125 (JNK inhibitor), MK2206 (AKT inhibitor), or N-acetylcysteine (reactive oxygen species scavenger) did not. Phosphoproteomic analysis revealed that phosphosites-which were altered by the addition of SB compared to MCLR treatment alone-included proteins involved in RNA processing, cytoskeletal stability, DNA damage response, protein degradation, and cell death. A closer analysis of specific proteins in some of these pathways indicated that SB reversed the MCLR-mediated phosphorylation of the necroptosis-associated proteins, the mixed lineage kinase domain-like protein (MLKL), receptor-interacting serine/threonine kinase 1 (RIP1), DNA damage response proteins, ataxia telangiectasia and Rad3-related kinase (ATR), and checkpoint kinase 1 (CHK1). Overall, these data implicate p38/MK2, DNA damage, and necroptosis in MCLR-mediated hepatotoxicity, and suggest these pathways may be targets for prevention prior to, or treatment after, MCLR toxicity.


Subject(s)
Chemical and Drug Induced Liver Injury , Mitogen-Activated Protein Kinases , Humans , Mitogen-Activated Protein Kinases/metabolism , Microcystins/toxicity , Phosphorylation , Phosphoprotein Phosphatases/metabolism , Cytoskeleton/metabolism , Chemical and Drug Induced Liver Injury/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Toxicology ; 464: 153021, 2021 12.
Article in English | MEDLINE | ID: mdl-34740672

ABSTRACT

Nonalcoholic steatohepatitis (NASH) causes liver extracellular matrix (ECM) remodeling and is a risk factor for fibrosis and hepatocellular carcinoma (HCC). Microcystin-LR (MCLR) is a hepatotoxin produced by fresh-water cyanobacteria that causes a NASH-like phenotype, liver fibrosis, and is also a risk factor for HCC. The focus of the current study was to investigate and compare hepatic recovery after cessation of MCLR exposure in healthy versus NASH animals. Male Sprague-Dawley rats were fed either a control or a high fat/high cholesterol (HFHC) diet for eight weeks. Animals received either vehicle or 30 µg/kg MCLR (i.p: 2 weeks, alternate days). Animals were euthanized at one of three time points: at the completion of the MCLR exposure period and after 2 and 4 weeks of recovery. Histological staining suggested that after four weeks of recovery the MCLR-exposed HFHC group had less steatosis and more fibrosis compared to the vehicle-exposed HFHC group and MCLR-exposed control group. RNA-Seq analysis revealed dysregulation of ECM genes after MCLR exposure in both control and HFHC groups that persisted only in the HFHC groups during recovery. After 4 weeks of recovery, MCLR hepatotoxicity in pre-existing NASH persistently dysregulated genes related to cellular differentiation and HCC. These data demonstrate impaired hepatic recovery and persistent carcinogenic changes after MCLR toxicity in pre-existing NASH.


Subject(s)
Extracellular Matrix/pathology , Liver Cirrhosis/physiopathology , Marine Toxins/toxicity , Microcystins/toxicity , Non-alcoholic Fatty Liver Disease/physiopathology , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Differentiation/genetics , Diet, High-Fat/adverse effects , Disease Models, Animal , Extracellular Matrix/genetics , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Non-alcoholic Fatty Liver Disease/genetics , Rats , Rats, Sprague-Dawley , Time Factors
7.
Phytother Res ; 35(6): 3286-3297, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33587330

ABSTRACT

Silybum marianum (L.) Gaertn. (Asteraceae), commonly known as milk thistle, is a botanical natural product used to self-treat multiple diseases such as Type 2 diabetes mellitus and nonalcoholic steatohepatitis (NASH). An extract from milk thistle seeds (achenes), termed silymarin, is comprised primarily of several flavonolignans. Systemic concentrations of these flavonolignans can influence the potential biologic effects of silymarin and the risk for pharmacokinetic silymarin-drug interactions. The aims of this research were to determine the roles of organic anion transporting polypeptides (OATPs/Oatps) in silymarin flavonolignan disposition and in pharmacokinetic silymarin-drug interactions. The seven major flavonolignans from silymarin were determined to be substrates for OATP1B1, OATP1B3, and OATP2B1. Sprague Dawley rats were fed either a control diet or a NASH-inducing diet and administered pitavastatin (OATP/Oatp probe substrate), followed by silymarin via oral gavage. Decreased protein expression of Oatp1b2 and Oatp1a4 in NASH animals increased flavonolignan area under the plasma concentration-time curve (AUC) and maximum plasma concentration. The combination of silymarin inhibition of Oatps and NASH-associated decrease in Oatp expression caused an additive increase in plasma pitavastatin AUC in the animals. These data indicate that OATPs/Oatps contribute to flavonolignan cellular uptake and mediate the interaction between silymarin and NASH on pitavastatin systemic exposure.


Subject(s)
Flavonolignans/metabolism , Organic Anion Transporters/metabolism , Silybum marianum/chemistry , Silymarin/metabolism , Animals , Antioxidants/metabolism , Drug Interactions , Flavonoids/metabolism , Humans , Male , Non-alcoholic Fatty Liver Disease/metabolism , Quinolines/pharmacokinetics , Rats , Rats, Sprague-Dawley
8.
Chemosphere ; 269: 128773, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33143886

ABSTRACT

Microcystin-LR (MCLR) is a liver and kidney toxin produced by cyanobacteria. Recently, it was demonstrated that MCLR exposure drives the progression of high fat/high cholesterol (HFHC) induced nonalcoholic fatty liver disease (NAFLD) to a more severe state. NAFLD is also a risk factor for chronic kidney disease (CKD), and the current study investigated MCLR renal toxicity in the context of an HFHC diet. Sprague Dawley rats were fed either a control diet or an HFHC diet for 10 weeks. After 6 weeks of diet, animals were administered either vehicle, 10 µg/kg, or 30 µg/kg MCLR via intraperitoneal injection every other day for 4 weeks. HFHC diet alone increased the renal glomerular change histopathology score, and 30 µg/kg MCLR exposure increased this score in both the control group and the HFHC group. In contrast, 30 µg/kg MCLR caused greater proteinuria and cast formation and decreased protein phosphatase 1 and 2A protein expression in the HFHC group. Urinary excretion of KIM-1 increased, but albumin and tamm-horsfall protein did not change after MCLR exposure. The general concordance between KIM-1, polyuria, proteinuria, and renal casts after MCLR exposure suggests that proximal tubule cell damage contributed to these connected pathologies. The control group adapted to repeated MCLR exposure by increasing the urinary elimination of MCLR and its metabolites, whereas this adaptation was blunted in the HFHC group. These data suggest an HFHC diet may increase the severity of certain MCLR-elicited renal toxicities.


Subject(s)
Marine Toxins , Microcystins , Animals , Cholesterol , Liver , Microcystins/toxicity , Rats , Rats, Sprague-Dawley
9.
J Pharmacol Exp Ther ; 371(2): 385-393, 2019 11.
Article in English | MEDLINE | ID: mdl-31420525

ABSTRACT

Patients with nonalcoholic steatohepatitis (NASH) exhibit altered hepatic protein expression of metabolizing enzymes and transporters and altered xenobiotic pharmacokinetics. The botanical natural product silymarin, which has been investigated as a treatment of NASH, contains flavonolignans that inhibit organic anion-transporting polypeptide (OATP) transporter function. The purpose of this study was to assess the individual and combined effects of NASH and silymarin on the disposition of the model OATP substrate pitavastatin. Male Sprague Dawley rats were fed a control or a methionine- and choline-deficient diet (NASH model) for 8 weeks. Silymarin (10 mg/kg) or vehicle followed by pitavastatin (0.5 mg/kg) were administered intravenously, and the pharmacokinetics were determined. NASH increased mean total flavonolignan area under the plasma concentration-time curve (AUC0-120 min) 1.7-fold. Silymarin increased pitavastatin AUC0-120 min in both control and NASH animals approx. 2-fold. NASH increased pitavastatin plasma concentrations from 2 to 40 minutes, but AUC0-120 min was unchanged. The combination of silymarin and NASH had the greatest effect on pitavastatin AUC0-120 min, which increased 2.9-fold compared with control vehicle-treated animals. NASH increased the total amount of pitavastatin excreted into the bile 2.7-fold compared with control animals, whereas silymarin decreased pitavastatin biliary clearance approx. 3-fold in both control and NASH animals. This double hit of NASH and silymarin on hepatic uptake transporters is another example of a multifactorial pharmacokinetic interaction that may have a greater impact on drug disposition than each hit alone. SIGNIFICANCE STATEMENT: Multifactorial effects on xenobiotic pharmacokinetics are within the next frontier for precision medicine research and clinical application. The combination of silymarin and NASH is a probable clinical scenario that can affect drug uptake, liver concentrations, biliary elimination, and ultimately, efficacy and toxicity.


Subject(s)
Antioxidants/pharmacokinetics , Biological Products/pharmacokinetics , Disease Models, Animal , Non-alcoholic Fatty Liver Disease/metabolism , Organic Anion Transporters/metabolism , Silymarin/pharmacokinetics , Animals , Antioxidants/therapeutic use , Biological Products/therapeutic use , Dose-Response Relationship, Drug , Drug Interactions/physiology , HEK293 Cells , Humans , Male , Non-alcoholic Fatty Liver Disease/drug therapy , Rats , Rats, Sprague-Dawley , Silymarin/therapeutic use
10.
Toxins (Basel) ; 11(7)2019 07 09.
Article in English | MEDLINE | ID: mdl-31323923

ABSTRACT

Microcystin-LR (MCLR) is a hepatotoxic cyanotoxin reported to cause a phenotype similar to nonalcoholic steatohepatitis (NASH). NASH is a common progressive liver disease that advances in severity due to exogenous stressors such as poor diet and toxicant exposure. Our objective was to determine how sub-chronic MCLR toxicity affects preexisting diet-induced NASH. Sprague-Dawley rats were fed one of three diets for 10 weeks: control, methionine and choline deficient (MCD), or high fat/high cholesterol (HFHC). After six weeks of diet, animals received vehicle, 10 µg/kg, or 30 µg/kg MCLR via intraperitoneal injection every other day for the final 4 weeks. Incidence and severity scoring of histopathology endpoints suggested that MCLR toxicity drove NASH to a less fatty and more fibrotic state. In general, expression of genes involved in de novo lipogenesis and fatty acid esterification were altered in favor of decreased steatosis. The higher MCLR dose increased expression of genes involved in fibrosis and inflammation in the control and HFHC groups. These data suggest MCLR toxicity in the context of preexisting NASH may drive the liver to a more severe phenotype that resembles burnt-out NASH.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Liver/drug effects , Microcystins/toxicity , Animals , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Diet, High-Fat , Fatty Acids/metabolism , Lipid Metabolism/drug effects , Liver/pathology , Liver Cirrhosis, Experimental/etiology , Liver Cirrhosis, Experimental/metabolism , Liver Cirrhosis, Experimental/pathology , Male , Marine Toxins , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Rats, Sprague-Dawley
11.
Toxicon ; 162: 1-8, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30849452

ABSTRACT

Microcystin-LR (MCLR) is a cyanotoxin produced by blue-green algae that causes liver and kidney toxicities. MCLR toxicity is dependent on cellular uptake through the organic anion transporting polypeptide (OATP) transporters. Nonalcoholic fatty liver disease (NAFLD) progresses through multiple stages, alters expression of hepatic OATPs, and is associated with chronic kidney disease. The purpose of this study was to determine whether NAFLD increases systemic exposure to MCLR and influences acute liver and kidney toxicities. Rats were fed a control diet or two dietary models of NAFLD; methionine and choline deficient (MCD) or high fat/high cholesterol (HFHC). Two studies were performed in these groups: 1) a single dose intravenous toxicokinetic study (20 µg/kg), and 2) a single dose intraperitoneal toxicity study (60 µg/kg). Compared to control rats, plasma MCLR area under the concentration-time curve (AUC) in MCD rats doubled, whereas biliary clearance (Clbil) was unchanged; in contrast, plasma AUC in HFHC rats was unchanged, whereas Clbil approximately doubled. Less MCLR bound to PP2A was observed in the liver of MCD rats. This shift in exposure decreased the severity of liver pathology only in the MCD rats after a single toxic dose of MCLR (60 µg/kg). In contrast, the single toxic dose of MCLR increased hepatic inflammation, plasma cholesterol, proteinuria, and urinary KIM1 in HFHC rats more than MCLR exposed control rats. In conclusion, rodent models of NAFLD alter MCLR toxicokinetics and acute toxicity and may have implications for liver and kidney pathologies in NAFLD patients.


Subject(s)
Liver/drug effects , Microcystins/toxicity , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cell Adhesion Molecules/urine , Cholesterol/metabolism , Choline/metabolism , Diet, High-Fat , Hepatobiliary Elimination , Inflammation/metabolism , Kidney/drug effects , Kidney/metabolism , Liver/metabolism , Liver/physiopathology , Male , Marine Toxins , Methionine/deficiency , Microcystins/metabolism , Non-alcoholic Fatty Liver Disease/chemically induced , Non-alcoholic Fatty Liver Disease/physiopathology , Organic Anion Transporters/metabolism , Protein Phosphatase 2/metabolism , Proteinuria/chemically induced , Proteinuria/metabolism , Rats, Sprague-Dawley , Toxicokinetics
12.
PLoS One ; 6(12): e28013, 2011.
Article in English | MEDLINE | ID: mdl-22194802

ABSTRACT

Several Seattle-area streams in Puget Sound were the focus of habitat restoration projects in the 1990s. Post-project effectiveness monitoring surveys revealed anomalous behaviors among adult coho salmon returning to spawn in restored reaches. These included erratic surface swimming, gaping, fin splaying, and loss of orientation and equilibrium. Affected fish died within hours, and female carcasses generally showed high rates (>90%) of egg retention. Beginning in the fall of 2002, systematic spawner surveys were conducted to 1) assess the severity of the adult die-offs, 2) compare spawner mortality in urban vs. non-urban streams, and 3) identify water quality and spawner condition factors that might be associated with the recurrent fish kills. The forensic investigation focused on conventional water quality parameters (e.g., dissolved oxygen, temperature, ammonia), fish condition, pathogen exposure and disease status, and exposures to metals, polycyclic aromatic hydrocarbons, and current use pesticides. Daily surveys of a representative urban stream (Longfellow Creek) from 2002-2009 revealed premature spawner mortality rates that ranged from 60-100% of each fall run. The comparable rate in a non-urban stream was <1% (Fortson Creek, surveyed in 2002). Conventional water quality, pesticide exposure, disease, and spawner condition showed no relationship to the syndrome. Coho salmon did show evidence of exposure to metals and petroleum hydrocarbons, both of which commonly originate from motor vehicles in urban landscapes. The weight of evidence suggests that freshwater-transitional coho are particularly vulnerable to an as-yet unidentified toxic contaminant (or contaminant mixture) in urban runoff. Stormwater may therefore place important constraints on efforts to conserve and recover coho populations in urban and urbanizing watersheds throughout the western United States.


Subject(s)
Aging/physiology , Cities , Ecosystem , Oncorhynchus kisutch/physiology , Reproduction/physiology , Rivers , Aging/drug effects , Animals , Behavior, Animal/drug effects , Bile/metabolism , Data Collection , Environmental Monitoring , Female , Fish Diseases/pathology , Geography , Gills/drug effects , Gills/metabolism , Hydrocarbons/toxicity , Insecticides/toxicity , Metals/metabolism , Mortality , Neurotoxins/toxicity , Ovum/drug effects , Ovum/physiology , Pesticides/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Reproduction/drug effects , Temperature , Washington , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...