Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5196, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890378

ABSTRACT

Multi-drug resistant (MDR) E. coli constitute a major public health burden globally, reaching the highest prevalence in the global south yet frequently flowing with travellers to other regions. However, our comprehension of the entire genetic diversity of E. coli colonising local populations remains limited. We quantified this diversity, its associated antimicrobial resistance (AMR), and assessed the impact of antibiotic use by recruiting 494 outpatients and 423 community dwellers in the Punjab province, Pakistan. Rectal swab and stool samples were cultured on CLED agar and DNA extracted from plate sweeps was sequenced en masse to capture both the genetic and AMR diversity of E. coli. We assembled 5,247 E. coli genomes from 1,411 samples, displaying marked genetic diversity in gut colonisation. Compared with high income countries, the Punjabi population generally showed a markedly different distribution of genetic lineages and AMR determinants, while use of antibiotics elevated the prevalence of well-known globally circulating MDR clinical strains. These findings implicate that longitudinal multi-regional genomics-based surveillance of both colonisation and infections is a prerequisite for developing mechanistic understanding of the interplay between ecology and evolution in the maintenance and dissemination of (MDR) E. coli.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , High-Throughput Nucleotide Sequencing , Pakistan/epidemiology , Humans , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Anti-Bacterial Agents/pharmacology , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/drug therapy , Drug Resistance, Multiple, Bacterial/genetics , Feces/microbiology , Female , Male , Genome, Bacterial/genetics , Adult , Genetic Variation , Middle Aged , Young Adult , Phylogeny , Adolescent , Child
2.
mBio ; 15(6): e0078424, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38682956

ABSTRACT

The nasopharynx is an important reservoir of disease-associated and antimicrobial-resistant bacterial species. This proof-of-concept study assessed the utility of a combined culture, matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), and targeted metagenomic sequencing workflow for the study of the pediatric nasopharyngeal bacterial microbiota. Nasopharyngeal swabs and clinical metadata were collected from Cambodian children during a hospital outpatient visit and then biweekly for 12 weeks. Swabs were cultured on chocolate and blood-gentamicin agar, and all colony morphotypes were identified by MALDI-TOF MS. Metagenomic sequencing was done on a scrape of all colonies from a chocolate agar culture and processed using the mSWEEP pipeline. One hundred one children were enrolled, yielding 620 swabs. MALDI-TOF MS identified 106 bacterial species/40 genera: 20 species accounted for 88.5% (2,190/2,474) of isolates. Colonization by Moraxella catarrhalis (92.1% of children on ≥1 swab), Haemophilus influenzae (87.1%), and Streptococcus pneumoniae (83.2%) was particularly common. In S. pneumoniae-colonized children, a median of two serotypes [inter-quartile range (IQR) 1-2, range 1-4] was detected. For the 21 bacterial species included in the mSWEEP database and identifiable by MALDI-TOF, detection by culture + MALDI-TOF MS and culture + mSWEEP was highly concordant with a median species-level agreement of 96.9% (IQR 86.8%-98.8%). mSWEEP revealed highly dynamic lineage-level colonization patterns for S. pneumoniae which were quite different to those for S. aureus. A combined culture, MALDI-TOF MS, targeted metagenomic sequencing approach for the exploration of the young child nasopharyngeal microbiome was technically feasible, and each component yielded complementary data. IMPORTANCE: The human upper respiratory tract is an important source of disease-causing and antibiotic-resistant bacteria. However, understanding the interactions and stability of these bacterial populations is technically challenging. We used a combination of approaches to determine colonization patterns over a 3-month period in 101 Cambodian children. The combined approach was feasible to implement, and each component gave complementary data to enable a better understanding of the complex patterns of bacterial colonization.


Subject(s)
Bacteria , Metagenomics , Microbiota , Nasopharynx , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Nasopharynx/microbiology , Microbiota/genetics , Child, Preschool , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Female , Metagenomics/methods , Child , Infant , Male , Cambodia , Haemophilus influenzae/genetics , Haemophilus influenzae/isolation & purification , Haemophilus influenzae/classification
3.
Viruses ; 15(12)2023 12 14.
Article in English | MEDLINE | ID: mdl-38140671

ABSTRACT

Sporulation is a finely regulated morphogenetic program important in the ecology and epidemiology of Clostridium botulinum. Exogenous elements disrupting sporulation-associated genes contribute to sporulation regulation and introduce diversity in the generally conserved sporulation programs of endospore formers. We identified a novel prophage-like DNA segment, termed the yin element, inserted within yabG, encoding a sporulation-specific cysteine protease, in an environmental isolate of C. botulinum. Bioinformatic analysis revealed that the genetic structure of the yin element resembles previously reported mobile intervening elements associated with sporulation genes. Within a pure C. botulinum culture, we observed two subpopulations of cells with the yin element either integrated into the yabG locus or excised as a circular DNA molecule. The dynamics between the two observed conformations of the yin element was growth-phase dependent and likely mediated by recombination events. The yin element was not required for sporulation by C. botulinum but triggered an earlier entry into sporulation than in a related isolate lacking this element. So far, the yin element has not been found in any other C. botulinum strains or other endospore-forming species. It remains to be demonstrated what kind of competitive edge it provides for C. botulinum survival and persistence.


Subject(s)
Clostridium botulinum , Clostridium botulinum/genetics , Prophages/genetics , Bacterial Proteins/genetics
4.
Bioinformatics ; 39(39 Suppl 1): i260-i269, 2023 06 30.
Article in English | MEDLINE | ID: mdl-37387143

ABSTRACT

MOTIVATION: Huge datasets containing whole-genome sequences of bacterial strains are now commonplace and represent a rich and important resource for modern genomic epidemiology and metagenomics. In order to efficiently make use of these datasets, efficient indexing data structures-that are both scalable and provide rapid query throughput-are paramount. RESULTS: Here, we present Themisto, a scalable colored k-mer index designed for large collections of microbial reference genomes, that works for both short and long read data. Themisto indexes 179 thousand Salmonella enterica genomes in 9 h. The resulting index takes 142 gigabytes. In comparison, the best competing tools Metagraph and Bifrost were only able to index 11 000 genomes in the same time. In pseudoalignment, these other tools were either an order of magnitude slower than Themisto, or used an order of magnitude more memory. Themisto also offers superior pseudoalignment quality, achieving a higher recall than previous methods on Nanopore read sets. AVAILABILITY AND IMPLEMENTATION: Themisto is available and documented as a C++ package at https://github.com/algbio/themisto available under the GPLv2 license.


Subject(s)
Genome, Bacterial , Nanopores , Genomics , Metagenomics
5.
Nat Commun ; 13(1): 7417, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456554

ABSTRACT

Opportunistic bacterial pathogen species and their strains that colonise the human gut are generally understood to compete against both each other and the commensal species colonising this ecosystem. Currently we are lacking a population-wide quantification of strain-level colonisation dynamics and the relationship of colonisation potential to prevalence in disease, and how ecological factors might be modulating these. Here, using a combination of latest high-resolution metagenomics and strain-level genomic epidemiology methods we performed a characterisation of the competition and colonisation dynamics for a longitudinal cohort of neonatal gut microbiomes. We found strong inter- and intra-species competition dynamics in the gut colonisation process, but also a number of synergistic relationships among several species belonging to genus Klebsiella, which includes the prominent human pathogen Klebsiella pneumoniae. No evidence of preferential colonisation by hospital-adapted pathogen lineages in either vaginal or caesarean section birth groups was detected. Our analysis further enabled unbiased assessment of strain-level colonisation potential of extra-intestinal pathogenic Escherichia coli (ExPEC) in comparison with their propensity to cause bloodstream infections. Our study highlights the importance of systematic surveillance of bacterial gut pathogens, not only from disease but also from carriage state, to better inform therapies and preventive medicine in the future.


Subject(s)
Cesarean Section , Ecosystem , Female , Pregnancy , Infant, Newborn , Humans , Klebsiella , Metagenomics , Parturition , Escherichia coli/genetics
6.
mBio ; 13(3): e0238421, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35499308

ABSTRACT

In early life, the immature human gut microbiota is prone to colonization by pathogens that are usually outcompeted by mature microbiota in the adult gut. Colonization and neurotoxin production by a vegetative Clostridium botulinum culture in the gut of an infant can lead to flaccid paralysis, resulting in a clinical outcome known as infant botulism, a potentially life-threatening condition. Beside host factors, little is known of the ecology, colonization, and adaptation of C. botulinum to the gut environment. In our previous report, an infant with intestinal botulism was shown to be colonized by neurotoxigenic C. botulinum culture for 7 months. In an effort to gain ecological and evolutionary insights into this unusually long gut colonization by C. botulinum, we analyzed and compared the genomes of C. botulinum isolates recovered from the infant feces during the course of intoxication and isolates from the infant household dust. A number of observed mutations and genomic alterations pinpointed at phenotypic traits that may have promoted colonization and adaptation to the gut environment and to the host. These traits include motility, quorum-sensing, sporulation, and carbohydrate metabolism. We provide novel perspectives and suggest a tentative model of the pathogenesis of C. botulinum in infant botulism. IMPORTANCE While the clinical aspects of infant botulism and the mode of action of BoNT have been thoroughly investigated, little is known on the pathogenesis and adaptive mechanisms of C. botulinum in the gut. Here, we provide for the first time a comprehensive view on the genomic dynamics and plasticity of C. botulinum over time in a case of infant botulism. The genomic and phenotypic analysis of C. botulinum isolates collected during the disease course offers an unprecedented view of C. botulinum ecology, evolution, and pathogenesis and may be instrumental in developing novel strategies for prevention and treatment of toxicoinfectious botulism.


Subject(s)
Botulism , Clostridium botulinum , Gastrointestinal Microbiome , Botulism/etiology , Clostridium botulinum/genetics , Feces , Genomics , Humans , Infant
7.
Microb Genom ; 7(11)2021 11.
Article in English | MEDLINE | ID: mdl-34779765

ABSTRACT

Genomic epidemiology is a tool for tracing transmission of pathogens based on whole-genome sequencing. We introduce the mGEMS pipeline for genomic epidemiology with plate sweeps representing mixed samples of a target pathogen, opening the possibility to sequence all colonies on selective plates with a single DNA extraction and sequencing step. The pipeline includes the novel mGEMS read binner for probabilistic assignments of sequencing reads, and the scalable pseudoaligner Themisto. We demonstrate the effectiveness of our approach using closely related samples in a nosocomial setting, obtaining results that are comparable to those based on single-colony picks. Our results lend firm support to more widespread consideration of genomic epidemiology with mixed infection samples.


Subject(s)
Genome, Bacterial , Genomics , Sequence Analysis , Whole Genome Sequencing
8.
Microbiol Resour Announc ; 10(22): e0136420, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34080898

ABSTRACT

Clostridium botulinum group III is the anaerobic Gram-positive bacterium producing the deadly neurotoxin responsible for animal botulism. Here, we used long-read sequencing to produce four complete genomes from Clostridium botulinum group III neurotoxin types C, D, C/D, and D/C. The protocol for obtaining high-molecular-weight DNA from C. botulinum group III is described.

9.
Wellcome Open Res ; 5: 14, 2020.
Article in English | MEDLINE | ID: mdl-34746439

ABSTRACT

Determining the composition of bacterial communities beyond the level of a genus or species is challenging because of the considerable overlap between genomes representing close relatives. Here, we present the mSWEEP pipeline for identifying and estimating the relative sequence abundances of bacterial lineages from plate sweeps of enrichment cultures. mSWEEP leverages biologically grouped sequence assembly databases, applying probabilistic modelling, and provides controls for false positive results. Using sequencing data from major pathogens, we demonstrate significant improvements in lineage quantification and detection accuracy. Our pipeline facilitates investigating cultures comprising mixtures of bacteria, and opens up a new field of plate sweep metagenomics.

10.
Methods Mol Biol ; 1807: 1-7, 2018.
Article in English | MEDLINE | ID: mdl-30030799

ABSTRACT

Environmental and clinical settings can host a wide variety of both bacterial species and strains in a single colony but accurate identification of the organisms is difficult. We describe BIB, a probabilistic method for estimating the relative abundances of species or strains contained in mixed samples analyzed by short read high-throughput sequencing. By grouping closely related strains together in clusters, the BIB pipeline is capable of estimating the relative abundances of the clusters contained in a sequencing sample.


Subject(s)
Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , Base Sequence , Genome, Bacterial , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...