Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 11316, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760481

ABSTRACT

The Greenland Ice Sheet is losing mass at increasing rates. Substantial amounts of this mass loss occur by ice discharge which is influenced by ocean thermal forcing. The ice sheet is surrounded by thousands of peripheral, dynamically decoupled glaciers. The mass loss from these glaciers is disproportionately high considering their negligible share in Greenland' overall ice mass. We study the relevance of ocean thermal forcing for ice discharge evolution in the context of this contrasting behaviour. Our estimate of ice discharge from the peripheral tidewater glaciers yields a rather stable Greenland-wide mean of 5.40 ± 3.54 Gt a-1 over 2000-2021. The evolutions of ice discharge and ocean thermal forcing are heterogeneous around Greenland. We observe a significant sector-wide increase of ice discharge in the East and a significant sector-wide decrease in the Northeast. Ocean thermal forcing shows significant increases along the northern/eastern coast, while otherwise unchanged conditions or decreases prevail. For East Greenland, this implies a clear influence of ocean thermal forcing on ice discharge. Similarly, we find clear influences at peripheral tidewater glaciers with thick termini that are similar to ice sheet outlet glaciers. At the peripheral glaciers in Northeast Greenland ice discharge evolution opposes ocean thermal forcing for unknown reasons.

2.
Interface Focus ; 13(3): 20230006, 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37065261

ABSTRACT

The paper studies principles behind structured, especially symmetric, representations through enforced inter-agent conformity. For this, we consider agents in a simple environment who extract individual representations of this environment through an information maximization principle. The representations obtained by different agents differ in general to some extent from each other. This gives rise to ambiguities in how the environment is represented by the different agents. Using a variant of the information bottleneck principle, we extract a 'common conceptualization' of the world for this group of agents. It turns out that the common conceptualization appears to capture much higher regularities or symmetries of the environment than the individual representations. We further formalize the notion of identifying symmetries in the environment both with respect to 'extrinsic' (birds-eye) operations on the environment as well as with respect to 'intrinsic' operations, i.e. subjective operations corresponding to the reconfiguration of the agent's embodiment. Remarkably, using the latter formalism, one can re-wire an agent to conform to the highly symmetric common conceptualization to a much higher degree than an unrefined agent; and that, without having to re-optimize the agent from scratch. In other words, one can 're-educate' an agent to conform to the de-individualized 'concept' of the agent group with comparatively little effort.

3.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: mdl-36066977

ABSTRACT

BackgroundAlcohol use disorder (AUD) is a chronic, relapsing brain disorder that accounts for 5% of deaths annually, and there is an urgent need to develop new targets for therapeutic intervention. The glucagon-like peptide-1 (GLP-1) receptor agonist exenatide reduces alcohol consumption in rodents and nonhuman primates, but its efficacy in patients with AUD is unknown.MethodsIn a randomized, double-blinded, placebo-controlled clinical trial, treatment-seeking AUD patients were assigned to receive exenatide (2 mg subcutaneously) or placebo once weekly for 26 weeks, in addition to standard cognitive-behavioral therapy. The primary outcome was reduction in number of heavy drinking days. A subgroup also completed functional MRI (fMRI) and single-photon emission CT (SPECT) brain scans.ResultsA total of 127 patients were enrolled. Our data revealed that although exenatide did not significantly reduce the number of heavy drinking days compared with placebo, it significantly attenuated fMRI alcohol cue reactivity in the ventral striatum and septal area, which are crucial brain areas for drug reward and addiction. In addition, dopamine transporter availability was lower in the exenatide group compared with the placebo group. Exploratory analyses revealed that exenatide significantly reduced heavy drinking days and total alcohol intake in a subgroup of obese patients (BMI > 30 kg/m2). Adverse events were mainly gastrointestinal.ConclusionThis randomized controlled trial on the effects of a GLP-1 receptor agonist in AUD patients provides new important knowledge on the effects of GLP-1 receptor agonists as a novel treatment target in addiction.Trial registrationEudraCT: 2016-003343-11. ClinicalTrials.gov (NCT03232112).FundingNovavi Foundation; Research Foundation, Mental Health Services, Capital Region of Denmark; Research Foundation, Capital Region of Denmark; Ivan Nielsen Foundation; A.P. Moeller Foundation; Augustinus Foundation; Woerzner Foundation; Grosserer L.F. Foghts Foundation; Hartmann Foundation; Aase and Ejnar Danielsen Foundation; P.A. Messerschmidt and Wife Foundation; and Lundbeck Foundation.


Subject(s)
Alcoholism , Venoms , Alcohol Drinking , Alcoholism/drug therapy , Animals , Dopamine Plasma Membrane Transport Proteins , Double-Blind Method , Exenatide , Glucagon-Like Peptide 1 , Glucagon-Like Peptide-1 Receptor/agonists , Peptides , Venoms/adverse effects
4.
Small ; 18(16): e2106570, 2022 04.
Article in English | MEDLINE | ID: mdl-35263020

ABSTRACT

Manganese ferrite nanoparticles display interesting features in bioimaging and catalytic therapies. They have been recently used in theranostics as contrast agents in magnetic resonance imaging (MRI), and as catalase-mimicking nanozymes for hypoxia alleviation. These promising applications encourage the development of novel synthetic procedures to enhance the bioimaging and catalytic properties of these nanomaterials simultaneously. Herein, a cost-efficient synthetic microwave method is developed to manufacture ultrasmall manganese ferrite nanoparticles as advanced multimodal contrast agents in MRI and positron emission tomography (PET), and improved nanozymes. Such a synthetic method allows doping ferrites with Mn in a wide stoichiometric range (Mnx Fe3-x O4 , 0.1 ≤ x ≤ 2.4), affording a library of nanoparticles with different magnetic relaxivities and catalytic properties. These tuned magnetic properties give rise to either positive or dual-mode MRI contrast agents. On the other hand, higher levels of Mn doping enhance the catalytic efficiency of the resulting nanozymes. Finally, through their intracellular catalase-mimicking activity, these ultrasmall manganese ferrite nanoparticles induce an unprecedented tumor growth inhibition in a breast cancer murine model. All of these results show the robust characteristics of these nanoparticles for nanobiotechnological applications.


Subject(s)
Contrast Media , Nanoparticles , Animals , Catalase , Ferric Compounds , Magnetic Resonance Imaging/methods , Manganese Compounds , Mice
5.
CNS Spectr ; 27(3): 347-354, 2022 06.
Article in English | MEDLINE | ID: mdl-33308348

ABSTRACT

BACKGROUND: Treatment with antipsychotics is associated with an increased risk of type 2 diabetes mellitus (T2D), and increased levels of inflammatory biomarkers are present in patients with T2D. We previously demonstrated that the glucagon-like peptide-1 receptor agonist liraglutide significantly reduced glucometabolic disturbances and body weight in prediabetic, overweight/obese schizophrenia-spectrum disorder patients treated with clozapine or olanzapine. This study aims to assess the involvement of cytokines in the therapeutic effects of liraglutide. METHODS: Serum concentrations of 10 cytokines (interferon-γ [IFN-γ], tumor necrosis factor-α, interleukin 1ß [IL-1ß], IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, and IL-13) from fasting prediabetic and normal glucose-tolerant (NGT) patients with schizophrenia-spectrum disorders were measured using multiplexed immunoassays. Prediabetic patients were randomized to 16 weeks of treatment with liraglutide or placebo, and cytokines were measured again at the end of the treatment. RESULTS: IFN-γ (1.98 vs 1.17 pg/ml, P = .001), IL-4 (0.02 vs 0.01 pg/ml, P < .001), and IL-6 (0.73 vs 0.46 pg/ml, P < .001) were significantly higher in prediabetic (n = 77) vs NGT patients (n = 31). No significant changes in cytokine levels following treatment with liraglutide (n = 37) vs placebo (n = 40) were found. CONCLUSION: Prediabetic vs NGT patients with schizophrenia treated with clozapine or olanzapine had increased serum levels of several proinflammatory cytokines, further substantiating the link between inflammation and T2D. Treatment with liraglutide did not affect the investigated cytokines. Further testing of these findings in larger numbers of individuals is needed.


Subject(s)
Clozapine , Diabetes Mellitus, Type 2 , Prediabetic State , Schizophrenia , Biomarkers , Clozapine/therapeutic use , Humans , Hypoglycemic Agents/therapeutic use , Interleukin-4/therapeutic use , Interleukin-6/therapeutic use , Liraglutide/pharmacology , Liraglutide/therapeutic use , Olanzapine/therapeutic use , Prediabetic State/chemically induced , Prediabetic State/drug therapy , Schizophrenia/drug therapy
6.
Nano Lett ; 21(21): 9347-9353, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34723561

ABSTRACT

This work reports on the use of protein engineering as a versatile tool to rationally design metal-binding proteins for the synthesis of highly photoluminescent protein-stabilized gold nanoclusters (Prot-AuNCs). The use of a single repeat protein scaffold allowed the incorporation of a set of designed metal-binding sites to understand the effect of the metal-coordinating residues and the protein environment on the photoluminescent (PL) properties of gold nanoclusters (AuNCs). The resulting Prot-AuNCs, synthesized by two sustainable procedures, showed size-tunable color emission and outstanding PL properties. In a second stage, tryptophan (Trp) residues were introduced at specific positions to provide an electron-rich protein environment and favor energy transfer from Trps to AuNCs. This modification resulted in improved PL properties relevant for future applications in sensing, biological labeling, catalysis, and optics.


Subject(s)
Gold , Metal Nanoparticles , Catalysis , Energy Transfer , Gold/chemistry , Metal Nanoparticles/chemistry , Protein Engineering
7.
ACS Appl Mater Interfaces ; 12(26): 28993-28999, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32501677

ABSTRACT

Synthesis of atomic nanoclusters (NCs) using proteins as a scaffold has attracted great attention. Usually, the synthetic conditions for the synthesis of NCs stabilized with proteins require extreme pH values or temperature. These harsh reaction conditions cause the denaturation of the proteins and end up in the loss of their biological functions. Until now, there are no examples of the use of antibodies as NC stabilizers. In this work, we present the first method for the synthesis of catalytic NCs that uses antibodies for the stabilization of NCs. Anti-BSA IgG was used as a model to demonstrate that it is possible to use an antibody as a scaffold for the synthesis of semiconductor and metallic NCs with catalytic properties. The synthesis of antibodies modified with NCs is carried out under nondenaturing conditions, which do not affect the antibody structure. The resulting antibodies still maintain the affinity for target antigens and protein G. The catalytic properties of the anti-BSA IgG modified with NCs can be used to the quantification of bovine serum albumin (BSA) in a direct sandwich enzyme-linked immunosorbent assay (ELISA).


Subject(s)
Antibodies/chemistry , Biological Assay/methods , Catalysis , Enzyme-Linked Immunosorbent Assay , Gold/chemistry , Immunoassay , Metal Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry
8.
Angew Chem Int Ed Engl ; 58(19): 6214-6219, 2019 05 06.
Article in English | MEDLINE | ID: mdl-30875448

ABSTRACT

Metal nanoclusters (NCs) are considered ideal nanomaterials for biological applications owing to their strong photoluminescence (PL), excellent photostability, and good biocompatibility. This study presents a simple and versatile strategy to design proteins, via incorporation of a di-histidine cluster coordination site, for the sustainable synthesis and stabilization of metal NCs with different metal composition. The resulting protein-stabilized metal NCs (Prot-NCs) of gold, silver, and copper are highly photoluminescent and photostable, have a long shelf life, and are stable under physiological conditions. The biocompatibility of the clusters was demonstrated in cell cultures in which Prot-NCs showed efficient cell internalization without affecting cell viability or losing luminescence. Moreover, the approach is translatable to other proteins to obtain Prot-NCs for various biomedical applications such as cell imaging or labeling.

9.
Biosens Bioelectron ; 101: 116-122, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29055193

ABSTRACT

Methanol is a poison which is frequently discovered in alcoholic beverages. Innovative methods to detect methanol in alcoholic beverages are being constantly developed. We report for the first time a new strategy for the detection of methanol using fluorescence spectroscopy and photoelectrochemical (PEC) analysis. The analytical system is based on the oxidation of cysteine (CSH) with hydrogen peroxide (H2O2) enzymatically generated by alcohol oxidase (AOx). H2O2 oxidizes capping agent CSH, modulating the growth of CSH-stabilized cadmium sulphide quantum dots (CdS QDs). Disposable screen-printed carbon electrodes (SPCEs) modified with a conductive osmium polymer (Os-PVP) complex were employed to quantify resulting CdS QDs. This polymer facilitates the "wiring" of in situ enzymatically generated CdS QDs, which photocatalyze oxidation of 1-thioglycerol (TG), generating photocurrent as the readout signal. Likewise, we proved that our systems did not suffer from interference by ethanol. The PEC assays showed better sensitivity than conventional methods, covering a wide range of potential applications for methanol quantification.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcoholic Beverages/analysis , Biosensing Techniques/methods , Cadmium Compounds/chemistry , Methanol/analysis , Pichia/enzymology , Quantum Dots/chemistry , Sulfides/chemistry , Cysteine/chemistry , Electrochemical Techniques/methods , Enzymes, Immobilized/chemistry , Hydrogen Peroxide/chemistry , Limit of Detection , Oxidation-Reduction
10.
Anal Chim Acta ; 986: 42-47, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28870324

ABSTRACT

We discovered that copper ions (Cu2+) catalyze the oxidation of cysteine (CSH) by oxygen (O2) to modulate the growth of CSH-capped cadmium sulfide (CdS) nanoparticles (NPs). This new chemical process was applied to sensitive fluorogenic and photoelectrochemical (PEC) detection of Cu2+ ions in real samples of mineral and tap water using the photocatalytic activity of the resulting NPs. Disposable screen-printed electrodes (SPCEs) modified with electroactive polyvinylpyridine bearing osmium complex (Os-PVP) by cyclic voltammetry (CV) were employed for PEC analytical system. CdS NPs formed during the assay photocatalyze oxidation of 1-thioglycerol (TG) upon application of 0.3 V vs. Ag/AgCl to SPCEs. Os-PVP complex mediated the electron transfer between the electrode surface and CdS NPs. We proved that our assays did not suffer from interference from other ions accompanying Cu2+ and the sensitivity of our assays covers the European Union standard limit of Cu2+ ions in drinking water.


Subject(s)
Copper/analysis , Drinking Water/analysis , Quantum Dots , Cadmium Compounds , Drinking Water/standards , Electrochemical Techniques , Electrodes , Nanoparticles , Osmium , Sulfides
11.
ACS Appl Mater Interfaces ; 8(43): 29252-29260, 2016 Nov 02.
Article in English | MEDLINE | ID: mdl-27753498

ABSTRACT

Electrochemical detection strategies employing semiconductor quantum dots (QDs) open up new opportunities for highly sensitive detection of biological targets. We designed a new assay based on microbead linked enzymatic generation of CdS QDs (Microbead QD-ELISA) and employed it in optical and electrochemical affinity assays for the cancer biomarker superoxide dismutase 2 (SOD2). Biotinylated antibodies against SOD2 were immobilized on the surface of polyvinyl chloride microbeads bearing streptavidin. In order to prevent any non-specific adsorption the microbeads were further blocked with bovine serum albumin. The analyte, SOD2 was captured on microbeads and labeled with alkaline phosphatase-conjugated antibody linked with mouse antibody against SOD2. Hydrolysis of para-nitrophenylphosphate by immobilized alkaline phosphatase triggered the rapid formation of phosphate-stabilized CdS QDs on the surface of microbeads. The resulting semiconductor nanoparticles were detected by fluorescence spectroscopy, microscopy, and square-wave voltammetry (SWV). The electrochemical assay based on the detection with square-wave voltammograms of Cd2+ ions originating from immobilized CdS QDs showed linearity up to 45 ng mL-1, and the limit of SOD2 detection equal to 0.44 ng mL-1 (1.96 × 10-11 M). This detection limit is lower by 2 orders of magnitude in comparison with that of other previously published assays for superoxide dismutase. The electrochemical assay was validated with HepG2 (Human hepatocellular carcinoma) cell lysate containing SOD2.


Subject(s)
Quantum Dots , Alkaline Phosphatase , Animals , Enzyme-Linked Immunosorbent Assay , Hep G2 Cells , Humans , Limit of Detection , Mice , Microspheres
12.
J Geophys Res Atmos ; 121(10): 5411-5429, 2016 05 27.
Article in English | MEDLINE | ID: mdl-27478717

ABSTRACT

Large-scale modeling of glacier mass balance relies often on the output from regional climate models (RCMs). However, the limited accuracy and spatial resolution of RCM output pose limitations on mass balance simulations at subregional or local scales. Moreover, RCM output is still rarely available over larger regions or for longer time periods. This study evaluates the extent to which it is possible to derive reliable region-wide glacier mass balance estimates, using coarse resolution (10 km) RCM output for model forcing. Our data cover the entire Svalbard archipelago over one decade. To calculate mass balance, we use an index-based model. Model parameters are not calibrated, but the RCM air temperature and precipitation fields are adjusted using in situ mass balance measurements as reference. We compare two different calibration methods: root mean square error minimization and regression optimization. The obtained air temperature shifts (+1.43°C versus +2.22°C) and precipitation scaling factors (1.23 versus 1.86) differ considerably between the two methods, which we attribute to inhomogeneities in the spatiotemporal distribution of the reference data. Our modeling suggests a mean annual climatic mass balance of -0.05 ± 0.40 m w.e. a-1 for Svalbard over 2000-2011 and a mean equilibrium line altitude of 452 ± 200 m above sea level. We find that the limited spatial resolution of the RCM forcing with respect to real surface topography and the usage of spatially homogeneous RCM output adjustments and mass balance model parameters are responsible for much of the modeling uncertainty. Sensitivity of the results to model parameter uncertainty is comparably small and of minor importance.

13.
Angew Chem Int Ed Engl ; 55(18): 5483-7, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27028669

ABSTRACT

A homologous nanoparticle library was synthesized in which gold nanoparticles were coated with polyethylene glycol, whereby the diameter of the gold cores, as well as the thickness of the shell of polyethylene glycol, was varied. Basic physicochemical parameters of this two-dimensional nanoparticle library, such as size, ζ-potential, hydrophilicity, elasticity, and catalytic activity ,were determined. Cell uptake of selected nanoparticles with equal size yet varying thickness of the polymer shell and their effect on basic structural and functional cell parameters was determined. Data indicates that thinner, more hydrophilic coatings, combined with the partial functionalization with quaternary ammonium cations, result in a more efficient uptake, which relates to significant effects on structural and functional cell parameters.


Subject(s)
Gold/chemistry , Human Umbilical Vein Endothelial Cells/chemistry , Metal Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Line , Chemistry, Physical , Humans , Mice , Particle Size , Surface Properties
14.
ACS Appl Mater Interfaces ; 7(42): 23412-7, 2015 Oct 28.
Article in English | MEDLINE | ID: mdl-26455427

ABSTRACT

We report the interfacial reaction-driven formation of micro/nanostructured strontium carbonate (SrCO3) biomorphs with subcellular topographical features on strontium zinc silicate (Sr2ZnSi2O7) biomedical coatings and explore their potential use in bone tissue engineering. The resulting SrCO3 crystals build a well-integrated scaffold surface that not only prevents burst release of ions from the coating but also presents nanotopographical features similar to cellular filopodia. The surface with biomorphic crystals enhances osteoblast adhesion, upregulates the alkaline phosphatase activity, and increases collagen production, highlighting the potential of the silica carbonate biomorphs for tissue regeneration.


Subject(s)
Carbonates/chemistry , Nanoparticles/chemistry , Strontium/chemistry , Tissue Engineering , Bone and Bones/drug effects , Carbonates/pharmacology , Cell Adhesion/drug effects , Humans , Osteoblasts/drug effects , Silicon Dioxide/chemistry , Strontium/pharmacology , Surface Properties , Zinc/chemistry
15.
ACS Nano ; 9(10): 10431-44, 2015 Oct 27.
Article in English | MEDLINE | ID: mdl-26327399

ABSTRACT

The toxic effects of Ag nanoparticles (NPs) remain an issue of debate, where the respective contribution of the NPs themselves and of free Ag(+) ions present in the NP stock suspensions and after intracellular NP corrosion are not fully understood. Here, we employ a recently set up methodology based on high-content (HC) imaging combined with high-content gene expression studies to examine the interaction of three types of Ag NPs with identical core sizes, but coated with either mercaptoundecanoic acid (MUA), dodecylamine-modified poly(isobutylene-alt-maleic anhydride) (PMA), or poly(ethylene glycol) (PEG)-conjugated PMA with two types of cultured cells (primary human umbilical vein endothelial cells (HUVEC) and murine C17.2 neural progenitor cells). As a control, cells were also exposed to free Ag(+) ions at the same concentration as present in the respective Ag NP stock suspensions. The data reveal clear effects of the NP surface properties on cellular interactions. PEGylation of the NPs significantly reduces their cellular uptake efficiency, whereas MUA-NPs are more prone to agglomeration in complex tissue culture media. PEG-NPs display the lowest levels of toxicity, which is in line with their reduced cell uptake. MUA-NPs display the highest levels of toxicity, caused by autophagy, cell membrane damage, mitochondrial damage, and cytoskeletal deformations. At similar intracellular NP levels, PEG-NPs induce the highest levels of reactive oxygen species (ROS), but do not affect the cell cytoskeleton, in contrast to MUA- and PMA-NPs. Gene expression studies support the findings above, defining autophagy and cell membrane damage-related necrosis as main toxicity pathways. Additionally, immunotoxicity, DNA damage responses, and hypoxia-like toxicity were observed for PMA- and especially MUA-NPs. Together, these data reveal that Ag(+) ions do contribute to Ag NP-associated toxicity, particularly upon intracellular degradation. The different surface properties of the NPs however result in distinct toxicity profiles for the three NPs, indicating clear NP-associated effects.


Subject(s)
Cell Survival/drug effects , Gene Expression Regulation/drug effects , Metal Nanoparticles/toxicity , Oxidative Stress/drug effects , Silver/metabolism , Silver/toxicity , Animals , Autophagy/drug effects , Cell Line , Fatty Acids/chemistry , Fatty Acids/metabolism , Fatty Acids/toxicity , Human Umbilical Vein Endothelial Cells , Humans , Maleic Anhydrides/chemistry , Maleic Anhydrides/metabolism , Maleic Anhydrides/toxicity , Metal Nanoparticles/chemistry , Mice , Polyethylene Glycols/chemistry , Polyethylene Glycols/metabolism , Polyethylene Glycols/toxicity , Polymers/chemistry , Polymers/metabolism , Polymers/toxicity , Silver/chemistry , Stress, Physiological/drug effects , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/toxicity , Surface Properties
16.
Sci Rep ; 5: 8079, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25628045

ABSTRACT

Arctic glaciers and ice caps are major contributors to past, present and future sea-level fluctuations. Continued global warming may eventually lead to the equilibrium line altitudes of these ice masses rising above their highest points, triggering unstoppable downwasting. This may feed future sea-level rise considerably. We here present projections for the timing of equilibrium-line loss at the major Arctic ice cap Vestfonna, Svalbard. The projections are based on spatially distributed climatic mass balance modelling driven by the outputs of multiple climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) forced by the Representative Concentration Pathways (RCPs) 2.6, 4.5, 6.0 and 8.5. Results indicate strongly decreasing climatic mass balances over the 21(st) century for all RCPs considered. Glacier-wide mass-balance rates will drop down to -4 m a(-1) w.e. (water equivalent) at a maximum. The date at which the equilibrium line rises above the summit of Vestfonna (630 m above sea level) is calculated to range between 2040 and 2150, depending on scenario.


Subject(s)
Climate Change , Arctic Regions , Global Warming , Ice Cover , Svalbard
17.
Anal Chem ; 86(20): 10059-64, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25227690

ABSTRACT

This work demonstrates the use of the peroxidase-mimicking DNAzyme (peroxidase-DNAzyme) as general and inexpensive platform for development of fluorogenic assays that do not require organic fluorophores. The system is based on the affinity interaction between the peroxidase-DNAzyme bearing hairpin sequence and the analyte (DNA or low molecular weight molecule), which changes the folding of the hairpin structure and consequently the activity of peroxidase-DNAzyme. Hence, in the presence of the analyte the peroxidase-DNAzyme structure is disrupted and does not catalyze the aerobic oxidation of l-cysteine to cystine. Thus, l-cysteine is not removed from the system and the fluorescence of the assay increases due to the in situ formation of fluorescent CdS nanocrystals. The capability of the system as a platform for fluorogenic assays was demonstrated through designing model geno- and aptasensor for the detection of a tumor marker DNA and a low molecular weight analyte, adenosine 5'triphosphate (ATP), respectively.


Subject(s)
Aptamers, Nucleotide/analysis , Cadmium Compounds/chemistry , DNA, Catalytic/metabolism , Molecular Mimicry , Nanostructures , Peroxidases/metabolism , Sulfides/chemistry , Base Sequence , DNA Primers , Molecular Structure , Oxidation-Reduction
18.
Article in English | MEDLINE | ID: mdl-23767486

ABSTRACT

We evaluate analytically and numerically the size of the frozen core and various scaling laws for critical Boolean networks that have a power-law in- and/or out-degree distribution. To this purpose, we generalize an efficient method that has previously been used for conventional random Boolean networks and for networks with power-law in-degree distributions. With this generalization, we can also deal with power-law out-degree distributions. When the power-law exponent is between 2 and 3, the second moment of the distribution diverges with network size, and the scaling exponent of the nonfrozen nodes depends on the degree distribution exponent. Furthermore, the exponent depends also on the dependence of the cutoff of the degree distribution on the system size. Altogether, we obtain an impressive number of different scaling laws depending on the type of cutoff as well as on the exponents of the in- and out-degree distributions. We confirm our scaling arguments and analytical considerations by numerical investigations.


Subject(s)
Algorithms , Logistic Models , Computer Simulation
19.
Anal Chem ; 84(18): 8033-7, 2012 Sep 18.
Article in English | MEDLINE | ID: mdl-22901080

ABSTRACT

Serum paraoxonase (PON1) is an enzyme associated exclusively with high-density lipoproteins and seems to be an antiatherogenic agent that prevents initiation and progression of atherosclerosis. PON1 also hydrolyzes organophosphates, protecting the nervous system from those neurotoxic compounds. Furthermore, PON1 could be a potential indicator for predicting and preventing other diseases, such as coronary artery disease, different kinds of cancers, diabetes mellitus type 2, metabolic syndrome, neurological disorders, liver disorders, etc. Here we report an ultrasensitive assay to measure PON1 arylesterase activity relying on the enzymatic modulation of the growth of fluorescent CdS nanoparticles (NP). The lowest PON1 activity that could be detected by our system was 0.625 mU mL(-1), with a dynamic range up to 5 mU mL(-1). This new system leads to an improvement of the limit of detection by around 15 times, compared to the conventional assays to determine PON1 arylesterase activity. This new system was also applied to determine PON1 arylesterase activity in human serum by the standard addition method. Furthermore, experiments with diluted serum spiked with PON1 demonstrated recovery of PON1 activity near 100%.


Subject(s)
Aryldialkylphosphatase/blood , Fluorescence Resonance Energy Transfer , Quantum Dots , Aryldialkylphosphatase/genetics , Aryldialkylphosphatase/metabolism , Cadmium Compounds/chemistry , Humans , Recombinant Proteins/blood , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfides/chemistry
20.
Biomacromolecules ; 11(1): 207-14, 2010 Jan 11.
Article in English | MEDLINE | ID: mdl-19954211

ABSTRACT

S-layer fusion protein technology was used to design four different fluorescent fusion proteins with three different GFP mutants and the red fluorescent protein mRFP1. Their absorption spectra, steady-state fluorescence, and fluorescence lifetime were investigated as a function of pH. It was found that fluorescence intensities and lifetime of the GFP mutant S-layer fusion proteins decreased about 50% between pH 6 and pH 5. The spectral properties of the red S-layer fusion protein were minimally affected by pH variations. These results were compared with His-tagged reference fluorescent proteins, demonstrating that the S-layer protein did not change the general spectral properties of the whole fusion protein. In addition, the pK(a) values of the fluorescent S-layer fusion proteins were calculated. Finally, it was shown that the S-layer fusion proteins were able to self-assemble forming 2D nanostructures of oblique p2 symmetry with lattice parameters of about a = 11 nm, b = 14 nm, and gamma = 80 degrees . The fluorescence tag did not hinder the natural self-assembly process of the S-layer protein. The combination of the fluorescence properties and the self-assembly ability of the engineered fusion proteins make them a promising tool to generate biomimetic surfaces for future applications in nanobiotechnology at a wide range of pH.


Subject(s)
Bacterial Proteins/chemistry , Geobacillus stearothermophilus/enzymology , Green Fluorescent Proteins/chemistry , Protein Engineering , Recombinant Fusion Proteins/chemistry , Absorption , Bacterial Proteins/ultrastructure , Fluorescence , Green Fluorescent Proteins/ultrastructure , Recombinant Fusion Proteins/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL