Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(31): e2406814121, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39042699

ABSTRACT

Animal vision depends on opsins, a category of G protein-coupled receptor (GPCR) that achieves light sensitivity by covalent attachment to retinal. Typically binding as an inverse agonist, 11-cis retinal photoisomerizes to the all-trans isomer and activates the receptor, initiating downstream signaling cascades. Retinal bound to bistable opsins isomerizes back to the 11-cis state after absorption of a second photon, inactivating the receptor. Bistable opsins are essential for invertebrate vision and nonvisual light perception across the animal kingdom. While crystal structures are available for bistable opsins in the inactive state, it has proven difficult to form homogeneous populations of activated bistable opsins either via illumination or reconstitution with all-trans retinal. Here, we show that a nonnatural retinal analog, all-trans retinal 6.11 (ATR6.11), can be reconstituted with the invertebrate bistable opsin, Jumping Spider Rhodopsin-1 (JSR1). Biochemical activity assays demonstrate that ATR6.11 functions as a JSR1 agonist. ATR6.11 binding also enables complex formation between JSR1 and signaling partners. Our findings demonstrate the utility of retinal analogs for biophysical characterization of bistable opsins, which will deepen our understanding of light perception in animals.


Subject(s)
Opsins , Retinaldehyde , Animals , Retinaldehyde/metabolism , Retinaldehyde/chemistry , Retinaldehyde/analogs & derivatives , Opsins/metabolism , Opsins/chemistry , Rhodopsin/metabolism , Rhodopsin/chemistry , Spiders/metabolism , Humans
2.
Nature ; 615(7954): 939-944, 2023 03.
Article in English | MEDLINE | ID: mdl-36949205

ABSTRACT

Vision is initiated by the rhodopsin family of light-sensitive G protein-coupled receptors (GPCRs)1. A photon is absorbed by the 11-cis retinal chromophore of rhodopsin, which isomerizes within 200 femtoseconds to the all-trans conformation2, thereby initiating the cellular signal transduction processes that ultimately lead to vision. However, the intramolecular mechanism by which the photoactivated retinal induces the activation events inside rhodopsin remains experimentally unclear. Here we use ultrafast time-resolved crystallography at room temperature3 to determine how an isomerized twisted all-trans retinal stores the photon energy that is required to initiate the protein conformational changes associated with the formation of the G protein-binding signalling state. The distorted retinal at a 1-ps time delay after photoactivation has pulled away from half of its numerous interactions with its binding pocket, and the excess of the photon energy is released through an anisotropic protein breathing motion in the direction of the extracellular space. Notably, the very early structural motions in the protein side chains of rhodopsin appear in regions that are involved in later stages of the conserved class A GPCR activation mechanism. Our study sheds light on the earliest stages of vision in vertebrates and points to fundamental aspects of the molecular mechanisms of agonist-mediated GPCR activation.


Subject(s)
Rhodopsin , Vision, Ocular , Animals , Binding Sites/radiation effects , Crystallography , Heterotrimeric GTP-Binding Proteins/chemistry , Heterotrimeric GTP-Binding Proteins/metabolism , Isomerism , Photons , Protein Binding/radiation effects , Protein Conformation/radiation effects , Retinaldehyde/chemistry , Retinaldehyde/metabolism , Retinaldehyde/radiation effects , Rhodopsin/chemistry , Rhodopsin/metabolism , Rhodopsin/radiation effects , Time Factors , Vision, Ocular/physiology , Vision, Ocular/radiation effects
3.
Acta Crystallogr D Struct Biol ; 77(Pt 9): 1153-1167, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34473086

ABSTRACT

Serial data collection has emerged as a major tool for data collection at state-of-the-art light sources, such as microfocus beamlines at synchrotrons and X-ray free-electron lasers. Challenging targets, characterized by small crystal sizes, weak diffraction and stringent dose limits, benefit most from these methods. Here, the use of a thin support made of a polymer-based membrane for performing serial data collection or screening experiments is demonstrated. It is shown that these supports are suitable for a wide range of protein crystals suspended in liquids. The supports have also proved to be applicable to challenging cases such as membrane proteins growing in the sponge phase. The sample-deposition method is simple and robust, as well as flexible and adaptable to a variety of cases. It results in an optimally thin specimen providing low background while maintaining minute amounts of mother liquor around the crystals. The 2 × 2 mm area enables the deposition of up to several microlitres of liquid. Imaging and visualization of the crystals are straightforward on the highly transparent membrane. Thanks to their affordable fabrication, these supports have the potential to become an attractive option for serial experiments at synchrotrons and free-electron lasers.


Subject(s)
Crystallography, X-Ray/methods , Macromolecular Substances/chemistry , Proteins/chemistry , Data Collection
4.
PLoS One ; 15(11): e0242137, 2020.
Article in English | MEDLINE | ID: mdl-33180885

ABSTRACT

The adhesion G-protein coupled receptor Adgrg6 (formerly Gpr126) is instrumental in the development, maintenance and repair of peripheral nervous system myelin. The prion protein (PrP) is a potent activator of Adgrg6 and could be used as a potential therapeutic agent in treating peripheral demyelinating and dysmyelinating diseases. We designed a dimeric Fc-fusion protein comprising the myelinotrophic domain of PrP (FT2Fc), which activated Adgrg6 in vitro and exhibited favorable pharmacokinetic properties for in vivo treatment of peripheral neuropathies. While chronic FT2Fc treatment elicited specific transcriptomic changes in the sciatic nerves of PrP knockout mice, no amelioration of the early molecular signs demyelination was detected. Instead, RNA sequencing of sciatic nerves revealed downregulation of cytoskeletal and sarcomere genes, akin to the gene expression changes seen in myopathic skeletal muscle of PrP overexpressing mice. These results call for caution when devising myelinotrophic therapies based on PrP-derived Adgrg6 ligands. While our treatment approach was not successful, Adgrg6 remains an attractive therapeutic target to be addressed in other disease models or by using different biologically active Adgrg6 ligands.


Subject(s)
Demyelinating Diseases/drug therapy , Peptide Fragments/therapeutic use , Prion Proteins/chemistry , Receptors, G-Protein-Coupled/agonists , Animals , Cell Line , Demyelinating Diseases/genetics , Female , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/genetics , Male , Mice , Mice, Inbred C57BL , Peptide Fragments/chemistry , Peptide Fragments/genetics , Prion Proteins/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Sciatic Nerve/metabolism , Transcriptome
5.
Phys Chem Chem Phys ; 22(41): 24086-24096, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33079118

ABSTRACT

G protein-coupled receptors (GPCRs) are a large and ubiquitous family of membrane receptors of great pharmacological interest. Cell-based assays are the primary tool for assessing GPCR interactions and activation but their design and intrinsic complexity limit their application. Biosensor-based assays that directly and specifically report GPCR-protein binding (e.g. arrestin or G protein) could provide a good alternative. We present an approach based on the stable immobilization of different arrestin-3 proteins (wild type, and two mutants, mutant X (arrestin-3 I386A) and mutant Y (arrestin-3 R393E)) via histidine tags on NTA(Ni2+)-coated sensors in a defined orientation. Using biolayer interferometry (BLI), surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D), we were able to follow the interaction between the different arrestin-3 proteins and a representative GPCR, jumping spider rhodopsin-1 (JSR1), in a label-free manner in real-time. The interactions were quantified as binding affinity, association and dissociation rate constants. The combination of surface-based biosensing methods indicated that JSR1 showed the strongest binding to arrestin mutant Y. Taken together, this work introduces direct label-free, biosensor-based screening approaches that can be easily adapted for testing interactions of proteins and other compounds with different GPCRs.


Subject(s)
Immobilized Proteins/metabolism , Rhodopsin/metabolism , beta-Arrestin 2/metabolism , Animals , Arthropod Proteins/metabolism , Biosensing Techniques , Immobilized Proteins/genetics , Lipid Bilayers/chemistry , Mutation , Phosphatidylcholines/chemistry , Protein Binding , Quartz Crystal Microbalance Techniques , Spiders/chemistry , Surface Plasmon Resonance , beta-Arrestin 2/genetics
6.
J Vis Exp ; (157)2020 03 16.
Article in English | MEDLINE | ID: mdl-32225143

ABSTRACT

The key to determining crystal structures of membrane protein complexes is the quality of the sample prior to crystallization. In particular, the choice of detergent is critical, because it affects both the stability and monodispersity of the complex. We recently determined the crystal structure of an active state of bovine rhodopsin coupled to an engineered G protein, mini-Go, at 3.1 Å resolution. Here, we detail the procedure for optimizing the preparation of the rhodopsin-mini-Go complex. Dark-state rhodopsin was prepared in classical and neopentyl glycol (NPG) detergents, followed by complex formation with mini-Go under light exposure. The stability of the rhodopsin was assessed by ultraviolet-visible (UV-VIS) spectroscopy, which monitors the reconstitution into rhodopsin of the light-sensitive ligand, 9-cis retinal. Automated size-exclusion chromatography (SEC) was used to characterize the monodispersity of rhodopsin and the rhodopsin-mini-Go complex. SDS-polyacrylamide electrophoresis (SDS-PAGE) confirmed the formation of the complex by identifying a 1:1 molar ratio between rhodopsin and mini-Go after staining the gel with Coomassie blue. After cross-validating all this analytical data, we eliminated unsuitable detergents and continued with the best candidate detergent for large-scale preparation and crystallization. An additional problem arose from the heterogeneity of N-glycosylation. Heterologously-expressed rhodopsin was observed on SDS-PAGE to have two different N-glycosylated populations, which would probably have hindered crystallogenesis. Therefore, different deglycosylation enzymes were tested, and endoglycosidase F1 (EndoF1) produced rhodopsin with a single species of N-glycosylation. With this strategic pipeline for characterizing protein quality, preparation of the rhodopsin-mini-Go complex was optimized to deliver the crystal structure. This was only the third crystal structure of a GPCR-G protein signaling complex. This approach can also be generalized for other membrane proteins and their complexes to facilitate sample preparation and structure determination.


Subject(s)
Crystallization/methods , GTP-Binding Proteins/metabolism , Signal Transduction
7.
Proc Natl Acad Sci U S A ; 116(29): 14547-14556, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31249143

ABSTRACT

Light-sensitive G protein-coupled receptors (GPCRs)-rhodopsins-absorb photons to isomerize their covalently bound retinal, triggering conformational changes that result in downstream signaling cascades. Monostable rhodopsins release retinal upon isomerization as opposed to the retinal in bistable rhodopsins that "reisomerize" upon absorption of a second photon. Understanding the mechanistic differences between these light-sensitive GPCRs has been hindered by the scarcity of recombinant models of the latter. Here, we reveal the high-resolution crystal structure of a recombinant bistable rhodopsin, jumping spider rhodopsin-1, bound to the inverse agonist 9-cis retinal. We observe a water-mediated network around the ligand hinting toward the basis of their bistable nature. In contrast to bovine rhodopsin (monostable), the transmembrane bundle of jumping spider rhodopsin-1 as well that of the bistable squid rhodopsin adopts a more "activation-ready" conformation often observed in other nonphotosensitive class A GPCRs. These similarities suggest the role of jumping spider rhodopsin-1 as a potential model system in the study of the structure-function relationship of both photosensitive and nonphotosensitive class A GPCRs.


Subject(s)
Arthropod Proteins/ultrastructure , Rhodopsin/ultrastructure , Signal Transduction/radiation effects , Spiders , Animals , Arthropod Proteins/isolation & purification , Arthropod Proteins/metabolism , Crystallography, X-Ray , HEK293 Cells , Humans , Ligands , Light , Molecular Dynamics Simulation , Protein Isoforms/isolation & purification , Protein Isoforms/metabolism , Protein Isoforms/ultrastructure , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/ultrastructure , Rhodopsin/isolation & purification , Rhodopsin/metabolism , Stereoisomerism , Structure-Activity Relationship
8.
Sci Rep ; 9(1): 439, 2019 01 24.
Article in English | MEDLINE | ID: mdl-30679635

ABSTRACT

Arrestin-1 desensitizes the activated and phosphorylated photoreceptor rhodopsin by forming transient rhodopsin-arrestin-1 complexes that eventually decay to opsin, retinal and arrestin-1. Via a multi-dimensional screening setup, we identified and combined arrestin-1 mutants that form lasting complexes with light-activated and phosphorylated rhodopsin in harsh conditions, such as high ionic salt concentration. Two quadruple mutants, D303A + T304A + E341A + F375A and R171A + T304A + E341A + F375A share similar heterologous expression and thermo-stability levels with wild type (WT) arrestin-1, but are able to stabilize complexes with rhodopsin with more than seven times higher half-maximal inhibitory concentration (IC50) values for NaCl compared to the WT arrestin-1 protein. These quadruple mutants are also characterized by higher binding affinities to phosphorylated rhodopsin, light-activated rhodopsin and phosphorylated opsin, as compared with WT arrestin-1. Furthermore, the assessed arrestin-1 mutants are still specifically associating with phosphorylated or light-activated receptor states only, while binding to the inactive ground state of the receptor is not significantly altered. Additionally, we propose a novel functionality for R171 in stabilizing the inactive arrestin-1 conformation as well as the rhodopsin-arrestin-1 complex. The achieved stabilization of the active rhodopsin-arrestin-1 complex might be of great interest for future structure determination, antibody development studies as well as drug-screening efforts targeting G protein-coupled receptors (GPCRs).


Subject(s)
Arrestins/metabolism , Multiprotein Complexes/metabolism , Opsins/metabolism , Protein Engineering/methods , Rhodopsin/metabolism , Animals , Arrestins/chemistry , Arrestins/genetics , Cattle , HEK293 Cells , Humans , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/genetics , Mutation , Opsins/chemistry , Phosphorylation , Protein Binding , Protein Conformation , Protein Stability , Rhodopsin/chemistry
9.
Sci Adv ; 4(9): eaat7052, 2018 09.
Article in English | MEDLINE | ID: mdl-30255144

ABSTRACT

Selective coupling of G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors (GPCRs) to specific Gα-protein subtypes is critical to transform extracellular signals, carried by natural ligands and clinical drugs, into cellular responses. At the center of this transduction event lies the formation of a signaling complex between the receptor and G protein. We report the crystal structure of light-sensitive GPCR rhodopsin bound to an engineered mini-Go protein. The conformation of the receptor is identical to all previous structures of active rhodopsin, including the complex with arrestin. Thus, rhodopsin seems to adopt predominantly one thermodynamically stable active conformation, effectively acting like a "structural switch," allowing for maximum efficiency in the visual system. Furthermore, our analysis of the well-defined GPCR-G protein interface suggests that the precise position of the carboxyl-terminal "hook-like" element of the G protein (its four last residues) relative to the TM7/helix 8 (H8) joint of the receptor is a significant determinant in selective G protein activation.


Subject(s)
Receptors, G-Protein-Coupled/chemistry , Rhodopsin/chemistry , Rhodopsin/metabolism , Animals , Binding Sites , Cattle , Crystallography, X-Ray , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutation , Protein Conformation , Receptors, G-Protein-Coupled/metabolism , Rhodopsin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL