Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
Exp Dermatol ; 30(2): 262-270, 2021 02.
Article En | MEDLINE | ID: mdl-33113249

Cutaneous lichen planus (CLP) and psoriasis (PSO) are both common chronic inflammatory skin diseases for which development of new treatments requires the identification of key targets. While PSO is a typical Th17/IL-17-disorder, there is some evidence that Th1/IFN-É£ dominate the inflammatory process in CLP. Nonetheless, the immunopathogenesis of CLP is not fully explained and key immunological factors still have to be recognized. In this study, we compared the immune signature of CLP lesions with the well-characterized inflammation present in PSO skin. First, we analysed the histological and immunohistological characteristics of CLP and PSO. Second, we assessed the cytokine expression (IL1A, IL1B, IL4, IL6, IL8, IL10, IL17A, IL19, IL21, IL22, IL23A, IL13, IFNG, TNF, IL12A, IL12B and IL36G) of lesional skin of CLP with PSO by qPCR. Histology revealed a similar epidermal thickness in CLP and PSO. Immunohistochemically, both diseases presented with an inflammatory infiltrate mainly composed by CD3+ CD4+ T cells rather than CD3+ CD8+ . Importantly, mRNA analysis showed a distinct cytokine signature: while levels of IL12B, IL1A, IL6 and IL23 were similar between the two groups, the characteristic PSO-associated cytokines IL8, IL17A, IL22, IL19 and IL36G were expressed at very low levels in CLP. In contrast, CLP lesional skin was dominated by the expression of IFNG, IL21, IL4, IL12A and TNF. Immunohistochemistry confirmed the dominance of IL-21, IFN-É£ and also pSTAT1 in the dermal infiltrate of CLP, while IL-17A was more present in PSO. Collectively, this study improves our understanding of the immunological factors dominating CLP. The dominating cytokines and signalling proteins identified suggest that anti-cytokine therapeutics like JAK inhibitors may be beneficial in CLP.


Cytokines/genetics , Lichen Planus/genetics , Lichen Planus/immunology , Psoriasis/genetics , Psoriasis/immunology , Adolescent , Adult , Aged , CD4-Positive T-Lymphocytes/pathology , Child , Cytokines/metabolism , Female , Gene Expression , Humans , Immunohistochemistry , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-17/metabolism , Interleukin-8/genetics , Interleukins/genetics , Interleukins/metabolism , Janus Kinase 1/antagonists & inhibitors , Lichen Planus/drug therapy , Lichen Planus/pathology , Male , Middle Aged , Psoriasis/pathology , RNA, Messenger/metabolism , STAT1 Transcription Factor/metabolism , Young Adult
2.
J Invest Dermatol ; 138(5): 1157-1165, 2018 05.
Article En | MEDLINE | ID: mdl-29203359

Inherited forms of epidermolysis bullosa are blistering diseases of the skin and mucosa resulting from various gene mutations. Transplantation of bone marrow-derived stem cells might be a promising systemic treatment for severe dystrophic or junctional epidermolysis bullosa, but many key questions remain unresolved. Two open questions of clinical interest are whether systemically transplanted bone marrow-derived stem cells of mesodermal origin might be able to transdifferentiate into keratinocytes with an ectodermal phenotype and whether these cells are also capable of repairing a specific intraepidermal gene defect. To address these questions, we transplanted bone marrow-derived stem cells into mice with a blistering disease exclusively localized to the epidermis resulting from a functional knockout of desmoglein-3 (Dsg3). We found that Dsg3+ donor-derived cells migrate into the recipient epidermis. However, these cells failed to restore the missing Dsg3 mRNA and DSG3 protein expression in the transplanted Dsg3-/- mice. The donor-derived cells found in the epidermis preserved their CD45+ hematopoietic origin, and no transdifferentiation into integrin α6+ keratinocytes or integrin α6+/CD34+ epidermal stem cells occurred. Our results indicate that bone marrow-derived stem cells preserve their mesodermal fate after systemic transplantation and are not capable of treating patients with epidermolysis bullosa with an intraepidermal skin defect.


Bone Marrow Cells/physiology , Desmoglein 3/physiology , Epidermolysis Bullosa/therapy , Hematopoietic Stem Cell Transplantation , Mesoderm/cytology , Skin/pathology , Animals , Cell Differentiation , Cell Movement , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
3.
J Dermatol Sci ; 87(3): 236-245, 2017 Sep.
Article En | MEDLINE | ID: mdl-28673488

BACKGROUND: Psoriasis is an inflammatory skin disease with aberrant keratinocyte proliferation, presumably as a result of immune cell activation. Th17 cytokines like IL-17A and IL-22 are critically implicated in epidermal thickening, altered keratinocyte differentiation and production of innate factors such as antimicrobial peptides. Psoriasis treatment options include modern targeted therapies using anti-cytokine antibodies and traditional non-targeted treatments like anthralin (dithranol). While the mode of action of anti-cytokine antibodies is defined, the effects of topical anthralin on psoriatic skin are not fully understood. OBJECTIVE: This study aims to unravel the direct effects of anthralin on keratinocyte proliferation, differentiation and production of psoriasis-associated factors. METHODS: We tested the effects of anthralin on cell proliferation, cytokeratin expression and changes in the expression of antimicrobial peptides using primary keratinocytes and 3D psoriasis tissue models with and without stimulation of the psoriasis-promoting cytokines IL-17A and IL-22. Moreover, we compared the findings derived from monolayer and multilayer cultures to data derived from lesional skin of patients with psoriasis before and under treatment with anthralin. RESULTS: Our study shows that anthralin directly induces cell apoptosis in vitro in monolayer cultures but not in 3D psoriasis tissue models treated with IL-17A and IL-22. Yet, keratinocyte proliferation as determined by Ki-67 staining is impaired by anthralin in vivo. In lesional skin but not in 3D psoriasis tissue models anthralin rapidly normalizes cytokeratin (CK)16 expression. Furthermore, anthralin directly inhibits DEFB4 expression in vitro and in vivo, while other antimicrobial peptides and cytokines studied like IL-6 and IL-8 are regulated differently in vitro and in vivo. CONCLUSIONS: Our results show that anthralin directly regulates DEFB4A expression. However, its beneficial effects on psoriasis cannot be explained by direct effects on keratinocyte differentiation or cytokine expression.


Anthralin/pharmacology , Dermatologic Agents/pharmacology , Keratin-16/metabolism , Keratinocytes/drug effects , Psoriasis/drug therapy , beta-Defensins/metabolism , Administration, Cutaneous , Anthralin/therapeutic use , Apoptosis/drug effects , Biopsy , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Dermatologic Agents/therapeutic use , Fluorescent Antibody Technique , Humans , Interleukin-17/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Interleukins/metabolism , Keratin-10/metabolism , Keratin-5/metabolism , Keratinocytes/metabolism , Ki-67 Antigen/metabolism , Psoriasis/pathology , Skin/cytology , Skin/drug effects , Skin/pathology , Tissue Culture Techniques/methods , Interleukin-22
4.
J Dermatol Sci ; 87(3): 268-277, 2017 Sep.
Article En | MEDLINE | ID: mdl-28655472

BACKGROUND: Atopic dermatitis (AD) is a common inflammatory skin disease with dysfunction of the skin barrier, an abnormal immune response and frequent allergies to environmental antigens like food antigens. Clinical observations suggest that certain diets can influence the course of AD. OBJECTIVE: Here we compared the phenotype of food allergen-specific T cells activated through skin or gut allergen exposure to transfer skin inflammation into naïve recipients upon epicutaenous allergen challenge. METHODS: Ovalbumin (OVA) TCR-transgenic mice were treated epicutaneously with OVA or were fed OVA. CD4+ T cells from skin lymph nodes or mesenteric lymph nodes were transferred into naïve BALB/c mice, which were challenged with OVA epicutaneously. Skin inflammation was determined by histological parameters. In addition, we analyzed the phenotype of the immune response in lymphoid tissues and in skin tissue. RESULTS: TCR-transgenic T cells activated through epicutaneous or oral OVA exposure both migrate to skin lymph nodes after adoptive transfer and epicutaenous OVA exposure. AD-like skin inflammation could only be induced by the transfer of epicutaneously primed OVA T cells. Analysis of the immune phenotype demonstrated an IL-22/IL-17A-dominated immune phenotype of skin-pathogenic T cells. CONCLUSION: IL-22 seems to be the critical cytokine for the development of AD and is induced in this model by epicutaneous sensitization with OVA.


CD4-Positive T-Lymphocytes/immunology , Dermatitis, Atopic/immunology , Food Hypersensitivity/immunology , Interleukins/immunology , Skin/immunology , Allergens/immunology , Animals , CD4-Positive T-Lymphocytes/metabolism , Disease Models, Animal , Female , Humans , Interleukin-17/immunology , Interleukin-17/metabolism , Interleukins/metabolism , Intestines/immunology , Mice , Mice, Inbred BALB C , Mice, Transgenic , Ovalbumin/genetics , Ovalbumin/immunology , Vaccination/methods , Interleukin-22
5.
Cell Physiol Biochem ; 34(1): 56-70, 2014.
Article En | MEDLINE | ID: mdl-24977481

BACKGROUND/AIMS: Inflammation is a major and critical component of the lung pathology in the hereditary disease cystic fibrosis. The molecular mechanisms of chronic inflammation in cystic fibrosis require definition. METHODS: We used several genetic mouse models to test a role of iNKT cells and ceramide in pulmonary inflammation of cystic fibrosis mice. Inflammation was determined by the pulmonary cytokine profil and the abundance of inflammatory cells in the lung. RESULTS: Here we provide a new concept how inflammation in the lung of individuals with cystic fibrosis is initiated. We show that in cystic fibrosis mice the mutation in the Cftr gene provokes a significant up-regulation of iNKT cells in the lung. Accumulation of iNKT cells serves to control autoimmune disease, which is triggered by a ceramide-mediated induction of cell death in CF organs. Autoimmunity becomes in particular overt in cystic fibrosis mice lacking iNKT cells and although suppression of the autoimmune response by iNKT cells is beneficial, IL-17(+) iNKT cells attract macrophages and neutrophils to CF lungs resulting in chronic inflammation. Genetic deletion of iNKT cells in cystic fibrosis mice prevents inflammation in CF lungs. CONCLUSION: Our data demonstrate an important function of iNKT cells in the chronic inflammation affecting cystic fibrosis lungs. iNKT cells suppress the auto-immune response induced by ceramide-mediated death of epithelial cells in CF lungs, but also induce a chronic pulmonary inflammation.


Killer Cells, Natural/immunology , Animals , Autoantibodies/metabolism , Autoimmunity , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/deficiency , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Disease Models, Animal , Interleukin-17/metabolism , Killer Cells, Natural/metabolism , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred CFTR , Pneumonia/metabolism , Pneumonia/pathology
6.
J Clin Invest ; 123(3): 1216-28, 2013 Mar.
Article En | MEDLINE | ID: mdl-23391720

Chemically modified mRNA is capable of inducing therapeutic levels of protein expression while circumventing the threat of genomic integration often associated with viral vectors. We utilized this novel therapeutic tool to express the regulatory T cell transcription factor, FOXP3, in a time- and site-specific fashion in murine lung, in order to prevent allergic asthma in vivo. We show that modified Foxp3 mRNA rebalanced pulmonary T helper cell responses and protected from allergen-induced tissue inflammation, airway hyperresponsiveness, and goblet cell metaplasia in 2 asthma models. This protection was conferred following delivery of modified mRNA either before or after the onset of allergen challenge, demonstrating its potential as both a preventive and a therapeutic agent. Mechanistically, FOXP3 induction controlled Th2 and Th17 inflammation by regulating innate immune cell recruitment through an IL-10-dependent pathway. The protective effects of FOXP3 could be reversed by depletion of IL-10 or administration of recombinant IL-17A or IL-23. Delivery of Foxp3 mRNA to sites of inflammation may offer a novel, safe therapeutic tool for the treatment of allergic asthma and other diseases driven by an imbalance in helper T cell responses.


Asthma/prevention & control , Forkhead Transcription Factors/genetics , Interleukin-10/metabolism , RNA, Messenger/genetics , Airway Remodeling , Airway Resistance , Animals , Asthma/immunology , Asthma/metabolism , Cell Line , Cytidine/analogs & derivatives , Cytidine/chemistry , Female , Forkhead Transcription Factors/biosynthesis , Gene Expression , Genetic Therapy , Humans , Immunity, Innate , Inflammation Mediators/pharmacology , Inflammation Mediators/physiology , Interleukin-17/pharmacology , Interleukin-17/physiology , Interleukin-23/pharmacology , Interleukin-23/physiology , Mice , Mice, Inbred BALB C , Mice, Knockout , Pyroglyphidae/immunology , RNA, Messenger/chemistry , Th17 Cells/immunology , Th17 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Thiouridine/analogs & derivatives , Thiouridine/chemistry , Transfection
...