Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Adv Mater ; : e2314197, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713519

Combining radiotherapy with immune checkpoint blockade therapy offers a promising approach to treat glioblastoma multiforme (GBM), yet challenges such as limited effectiveness and immune-related adverse events (irAEs) persist. These issues are largely due to the failure in targeting immunomodulators directly to the tumor microenvironment. To address this, we developed a biomimetic nanoplatform that combines a genetically modified mesenchymal stem cell (MSC) membrane with a bioactive nanoparticle core for chemokine-directed radioimmunotherapy of GBM. The CCR2-overexpressing MSC membrane acts as a tactical tentacle to achieve radiation-induced tropism toward the abundant chemokine ligand CCL2 in irradiated gliomas. The nanoparticle core, comprising diselenide-bridged mesoporous silica nanoparticles (MSNs) and PD-L1 antibodies (αPD-L1), enables X-ray-responsive drug release and radiosensitization. In two murine models with orthotopic GBM tumors, this nanoplatform reinvigorated immunogenic cell death, and augmented the efficacy and specificity of GBM radioimmunotherapy, with reduced occurrence of irAEs. This study suggests a promising radiation-induced tropism strategy for targeted drug delivery, and presents a potent nanoplatform that enhances the efficacy and safety of radio-immunotherapy. This article is protected by copyright. All rights reserved.

2.
Proc Natl Acad Sci U S A ; 121(4): e2305745121, 2024 Jan 23.
Article En | MEDLINE | ID: mdl-38236731

The development of vaccines, which induce effective immune responses while ensuring safety and affordability, remains a substantial challenge. In this study, we proposed a vaccine model of a restructured "head-to-tail" dimer to efficiently stimulate B cell response. We also demonstrate the feasibility of using this model to develop a paramyxovirus vaccine through a low-cost rice endosperm expression system. Crystal structure and small-angle X-ray scattering data showed that the restructured hemagglutinin-neuraminidase (HN) formed tetramers with fully exposed quadruple receptor binding domains and neutralizing epitopes. In comparison with the original HN antigen and three traditional commercial whole virus vaccines, the restructured HN facilitated critical epitope exposure and initiated a faster and more potent immune response. Two-dose immunization with 0.5 µg of the restructured antigen (equivalent to one-127th of a rice grain) and one-dose with 5 µg completely protected chickens against a lethal challenge of the virus. These results demonstrate that the restructured HN from transgenic rice seeds is safe, effective, low-dose useful, and inexpensive. We provide a plant platform and a simple restructured model for highly effective vaccine development.


Oryza , Paramyxovirinae , Viral Vaccines , Animals , Chickens , Newcastle disease virus , Oryza/genetics , Universal Design , Epitopes , Antibodies, Viral
3.
Biomater Adv ; 155: 213696, 2023 Dec.
Article En | MEDLINE | ID: mdl-37952462

Critical bone defects complicate tissue graft-based surgeries, raising healthcare expenditures and underscoring scaffold-based tissue-engineering strategies to support bone reconstruction. Our study highlighted that the phase-compatible combination of inorganic nanorods, nanofibers, and hydrogels is promising for developing biomimetic and cell-instructive scaffolds since the bone matrix is a porous organic/inorganic composite. In brief, methacrylated gelatin (GelMA) was reacted with dopamine to form catechol-modified GeLMA (GelMA-C). The GelMA-C was nanocoated onto an iron-doped hydroxyapatite (FeHAp) nanorod via metal-catechol network coordination. The modified nanorod (FeHAp@GelMA-C) was loaded onto GelMA-based nanofibers. The nanorods loaded pre-fibers were electrospun onto GelMA solution and photochemically crosslinked to fabricate a fiber-reinforced hydrogel. The structural, mechanical, physicochemical, biocompatibility, swelling properties, osteogenic potential, and bone remodelling potential (using rat femoral defect model) of modified nanorods, simple hydrogel, and nanorod-loaded fiber-reinforced hydrogel were studied. The results supported that the interface interaction between GelMA-C/nanorods, nanorods/nanofibers, nanorods/hydrogels, and nanofiber/hydrogels significantly improved the microstructural and mechanical properties of the scaffold. Compared to pristine hydrogel, the nanorod-loaded fiber-reinforced scaffold better supported cellular responses, osteogenic differentiation, matrix mineralization, and accelerated bone regeneration. The nanorod-loaded fiber-reinforced hydrogel proved more biomimetic and cell-instructive for guided bone reconstruction.


Nanofibers , Nanotubes , Rats , Animals , Tissue Engineering/methods , Osteogenesis , Tissue Scaffolds/chemistry , Hydrogels , Gelatin/chemistry , Catechols
4.
ACS Macro Lett ; 12(11): 1549-1557, 2023 11 21.
Article En | MEDLINE | ID: mdl-37921535

Photosensitizers (PSs) have greatly flourished as a promising tool for photodynamic therapy owing to their integration of both in situ diagnosis and treatment in a single nanoplatform. However, there is still a need to explore synthesis pathways that can result in high-performance PSs with good reproducibility, high yield, less dark toxicity, and an attractive therapeutic index. Therefore, by exploiting the precise molecular engineering guideline, this work unveils a straightforward protocol to fabricate three homologous PSs (TPA-T-RS, TPA-Ts-RS, and TPA-Ts-RCN) with aggregation-induced emission (AIE) characteristics. Through slight structural tuning, the PSs are capable of anchoring to the cell membrane, mitochondria, and lysosome, and effectively generating reactive oxygen species (ROS). More importantly, TPA-Ts-RCN proved an intuitively appealing imaging-guided photodynamic therapy (PDT) effect. This work is expected to add a promising dimension to the field of architecting AIE PSs for image-guided photodynamic therapy.


Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Reproducibility of Results , Photochemotherapy/methods , Reactive Oxygen Species/metabolism , Mitochondria/metabolism
5.
Plant Biotechnol J ; 21(12): 2546-2559, 2023 Dec.
Article En | MEDLINE | ID: mdl-37572354

Pestiviruses, including classical swine fever virus, remain a concern for global animal health and are responsible for major economic losses of livestock worldwide. Despite high levels of vaccination, currently available commercial vaccines are limited by safety concerns, moderate efficacy, and required high doses. The development of new vaccines is therefore essential. Vaccine efforts should focus on optimizing antigen presentation to enhance immune responses. Here, we describe a simple herringbone-dimer strategy for efficient vaccine design, using the classical swine fever virus E2 expressed in a rice endosperm as an example. The expression of rE2 protein was identified, with the rE2 antigen accumulating to 480 mg/kg. Immunological assays in mice, rabbits, and pigs showed high antigenicity of rE2. Two immunizations with 284 ng of the rE2 vaccine or one shot with 5.12 µg provided effective protection in pigs without interference from pre-existing antibodies. Crystal structure and small-angle X-ray scattering results confirmed the stable herringbone dimeric conformation, which had two fully exposed duplex receptor binding domains. Our results demonstrated that rice endosperm is a promising platform for precise vaccine design, and this strategy can be universally applied to other Flaviviridae virus vaccines.


Classical Swine Fever Virus , Classical Swine Fever , Oryza , Viral Vaccines , Animals , Swine , Rabbits , Mice , Classical Swine Fever/prevention & control , Antibodies, Viral , Viral Envelope Proteins , Immunity
6.
Int J Biol Macromol ; 247: 125738, 2023 Aug 30.
Article En | MEDLINE | ID: mdl-37423444

Diabetes wounds take longer to heal due to extended inflammation, decreased angiogenesis, bacterial infection, and oxidative stress. These factors underscore the need for biocompatible and multifunctional dressings with appropriate physicochemical and swelling properties to accelerate wound healing. Herein, insulin (Ins)-loaded, and silver (Ag) coated mesoporous polydopamine (mPD) nanoparticles were synthesized (Ag@Ins-mPD). The nanoparticles were dispersed into polycaprolactone/methacrylated hyaluronate aldehyde dispersion, electrospun to form nanofibers, and then photochemically crosslinked to form a fibrous hydrogel. The nanoparticle, fibrous hydrogel, and nanoparticle-reinforced fibrous hydrogel were characterized for their morphological, mechanical, physicochemical, swelling, drug-release, antibacterial, antioxidant, and cytocompatibility properties. The diabetic wound reconstruction potential of nanoparticle-reinforced fibrous hydrogel was studied using BALB/c mice. The results indicated that Ins-mPD acted as a reductant to synthesize Ag nanoparticles on their surface, held antibacterial and antioxidant potential, and their mesoporous properties are crucial for insulin loading and sustained release. The nanoparticle-reinforced scaffolds were uniform in architecture, porous, mechanically stable, showed good swelling, and possessed superior antibacterial, and cell-responsive properties. Furthermore, the designed fibrous hydrogel scaffold demonstrated good angiogenic, anti-inflammatory, increased collagen deposition, and faster wound repair capabilities, therefore, it could be used as a potential candidate for diabetic wound treatment.


Bivalvia , Diabetes Mellitus , Metal Nanoparticles , Mice , Animals , Hydrogels/chemistry , Silver/chemistry , Insulin , Wound Healing , Metal Nanoparticles/chemistry , Antioxidants , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glycosaminoglycans
7.
Small ; 19(27): e2300101, 2023 07.
Article En | MEDLINE | ID: mdl-36970774

Sonodynamic therapy (SDT) has attracted intensive attention, but is still hindered by low sonosensitization and non-biodegradability of the traditional sonosensitizers. Herein, perovskite-type manganese vanadate (MnVO3 ) sonosensitizers integrating high reactive oxide species (ROS) production efficiency and appropriate bio-degradability are developed for enhanced SDT. Taking advantage of the intrinsic properties of perovskites such as narrow bandgap and substantial oxygen vacancies, MnVO3 shows a facile ultrasound (US)-triggered electrons-holes separation and restrained recombination, thus enhancing the ROS quantum yield in SDT. Furthermore, MnVO3 exhibits a considerable chemodynamic therapy (CDT) effect under the acidic condition probably owing to the presence of manganese and vanadium ions. Due to the presence of high-valent vanadium, MnVO3 can also eliminate glutathione (GSH) within the tumor microenvironment, which synergistically amplifies the efficacy of SDT and CDT. Importantly, the perovskite structure bestows MnVO3 with superior biodegradability, which alleviates the long-term presence of residues in metabolic organs after therapeutic actions. Based on these characteristics, US-assisted MnVO3 achieves an excellent antitumor outcome along with low systemic toxicity. Overall, perovskite-type MnVO3 may be promising sonosensitizers for highly efficient and safe treatment of cancer. The work attempts to explore the potential utility of perovskites in the design of degradable sonosensitizers.


Neoplasms , Ultrasonic Therapy , Humans , Vanadates , Vanadium , Manganese , Reactive Oxygen Species , Neoplasms/therapy , Glutathione , Oxides , Cell Line, Tumor , Tumor Microenvironment
8.
Rev Med Virol ; 33(2): e2425, 2023 03.
Article En | MEDLINE | ID: mdl-36683235

Dengue illness can range from mild illness to life-threatening haemorrhage. It is an Aedes-borne infectious disease caused by the dengue virus, which has four serotypes. Each serotype acts as an independent infectious agent. The antibodies against one serotype confer homotypic immunity but temporary protection against heterotypic infection. Dengue has become a growing health concern for up to one third of the world's population. Currently, there is no potent anti-dengue medicine, and treatment for severe dengue relies on intravenous fluid management and pain medications. The burden of dengue dramatically increases despite advances in vector control measures. These factors underscore the need for a vaccine. Various dengue vaccine strategies have been demonstrated, that is, live attenuated vaccine, inactivated vaccine, DNA vaccine, subunit vaccine, and viral-vector vaccines, some of which are at the stage of clinical testing. Unfortunately, the forefront candidate vaccine is less than satisfactory, and its performance depends on serostatus and age factors. The lessons from clinical studies depicted ambiguity concerning the efficacy of dengue vaccine. Our study highlighted that viral structural heterogeneity, epitope accessibility, autoimmune complications, genetic variants, genetic diversities, antigen competition, virulence variation, host-pathogen specific interaction, antibody-dependent enhancement, cross-reactive immunity among Flaviviruses, and host-susceptibility determinants not only influence infection outcomes but also hampered successful vaccine development. This review integrates dengue determinants allocated necessities and challenges, which would provide insight for universal dengue vaccine development.


Dengue Vaccines , Dengue Virus , Viral Vaccines , Animals , Humans , Antibodies, Viral , Mosquito Vectors , Vaccine Development
9.
Microbiol Spectr ; 10(4): e0105022, 2022 08 31.
Article En | MEDLINE | ID: mdl-35862968

Vaccination is an effective method to control the spread of classical swine fever virus (CSFV), which is a major cause of economic losses to the swine industry. Although serological detection assays are commonly used to assess immune status, current methods for monitoring of antibodies (Abs) are time-consuming, expensive, and require cell culture and virus manipulation. To address these problems, the E2 protein of CSFV was expressed in transgenic rice seeds as a labeled antigen for the development of an immunochromatographic test strip (ICTS) for rapid, precise, and cost-effective detection of Abs. The ICTS has a reasonable sensitivity of 1:128,000 for detection of serum Abs against CSFV and no cross-reactivity with Abs of other porcine viruses. The similarity of the results between the proposed ICTS and a commercial enzyme-linked immunosorbent assay was 94.1% (128/136) for detection of serum Abs from immunized animals and 92.3% (72/78) for detection of maternally derived Abs. The proposed assay was successfully used to monitor Abs against E2 of both pigs and rabbits immunized with a live attenuated vaccine or an E2 subunit vaccine. The results confirmed that the ICTS can be applied to detect Ab levels in animals with different immunological backgrounds. The ICTS based on plant-derived E2 is a relatively inexpensive, rapid, and accurate assay for detection of Abs against CSFV and avoids the risk of contamination by animal products. IMPORTANCE The E2 protein of classical swine fever virus (CSFV) was expressed in transgenic rice endosperms as a diagnostic antigen for use with a rapid colloidal gold assay for the detection of antibodies (Abs) against CSFV. This improved test was used to monitor Abs against the E2 protein in both pigs and rabbits immunized with a live attenuated vaccine or E2 subunit vaccine. The assay successfully detected Ab levels in serum samples from piglets with different immunological backgrounds. In contrast to current E2 protein-based diagnostic methods using Escherichia coli or insect cells as expression systems, plant-derived E2 avoids the limitations of low immunogenicity of eukaryotic expression systems and potential contamination of fetal bovine serum with bovine viral diarrhea virus in cell culture.


Classical Swine Fever Virus , Classical Swine Fever , Viral Vaccines , Animals , Antibodies, Viral , Classical Swine Fever/diagnosis , Classical Swine Fever/prevention & control , Rabbits , Swine , Vaccines, Attenuated , Vaccines, Subunit
10.
Biomed Mater ; 17(2)2022 02 22.
Article En | MEDLINE | ID: mdl-35147520

Programmed death ligand 1 (PD-L1) overexpressed on the surface of tumor cells is one of the reasons for tumor immune escape. Reducing PD-L1 expression has been proved to be an effective strategy to facilitate immune system activation and inhibit tumor progression. RNA interference (RNAi) is a promising technology for gene regulation in tumor therapy. In this study, we constructed a targeted siRNA delivery system NPs@apt to transfect PD-L1 siRNA into human non-small-cell lung carcinoma cell line (A549) for inhibiting tumor immune evasion. NPs@apt was prepared by compressing PD-L1 siRNA with cationic Lipofectamine 2000, fusing with erythrocyte membrane-derived nanovesicles, and further modifying with targeting AS1411 aptamer. The introduction of erythrocyte membrane endowed the siRNA delivery system with lower cytotoxicity and the ability to escape from the phagocytosis of macrophages. The stability of NPs@apt and the protection to loaded siRNA were confirmed.In vitrostudies after NPs@apt treatment demonstrated that PD-L1 siRNA was selectively delivered into A549 cells, and further resulted in PD-L1 gene knockdown, T cell activation and tumor cell growth inhibition. This study offered an alternative strategy for specific siRNA transfection for improving anti-tumor immunity.


Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Cell Line, Tumor , Humans , Immunotherapy/methods , Lung Neoplasms/genetics , Lung Neoplasms/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism
11.
J Mater Chem B ; 10(6): 915-926, 2022 02 09.
Article En | MEDLINE | ID: mdl-35050296

Hydrogel-based wound dressings with tissue adhesion abilities are widely used for wound closure. However, currently developed hydrogel adhesives are still poor at continuing to seal wounds while bleeding is ongoing. Herein, we demonstrate an antibacterial and hemostatic hydrogel adhesive with low-swelling properties and toughness for wound healing. The hydrogel was composed of Pluronic F127 diacrylate, quaternized chitosan diacrylate, silk fibroin, and tannic acid, and it was not only able to maintain good tissue adhesion abilities in a moist environment but it also showed guaranteed tissue adhesion and mechanical strength after absorbing water due to its low-swelling and toughness properties. Furthermore, in vitro and in vivo tests demonstrated that the hydrogel also had antibacterial, antioxidant, and hemostatic properties, which could promote tissue regeneration. All these findings demonstrate that this hydrogel with multifunctional properties is a promising material for clinical wound healing applications.


Hemostatics , Hydrogels , Adhesives/pharmacology , Anti-Bacterial Agents/pharmacology , Hemostatics/pharmacology , Humans , Hydrogels/pharmacology , Tissue Adhesions , Wound Healing
12.
Int J Biol Macromol ; 189: 837-846, 2021 Oct 31.
Article En | MEDLINE | ID: mdl-34403672

Classical swine fever virus (CSFV) is a member of the genus Pestivirus, which causes serious economic losses. The re-emergence of the disease in Japan in 2018 has increased awareness of CSFV. In this study, Balb/c mice were immunized with plant-derived E2 protein, and four monoclonal antibodies (mAbs) 4B11, 7B3, 11A5 and 6F3 were generated. Two of these mAbs, 4B11 and 7B3, effectively blocked CSFV infection of PK-15 cells. Both mAbs recognized a novel linear epitope, 256CLIGNTTVKVHASDER271. The neutralizing ability of anti-CSFV serum decreased 63%, when pre-incubated with the linear peptide at 200 µg/mL. Structural analysis showed that this linear epitope is present at the border of Domain C and Domain D on the surface of the E2 protein. Alignment of amino acid sequences showed that the epitope was conserved in different subgroups of CSFV but not in other members of the Pestivirus genus. Consistently with the analysis above, this epitope distinguished antibodies against CSFV from those against bovine viral diarrhea virus (BVDV). Our study provides an ideal candidate peptide for new vaccine design and differential diagnosis of CSFV. These findings will contribute to the control and eradication of classical swine fever.


Antibodies, Neutralizing/immunology , Classical Swine Fever Virus/chemistry , Classical Swine Fever Virus/immunology , Epitopes/immunology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/immunology , Antibody Specificity/immunology , Conserved Sequence , Female , Mice, Inbred BALB C , Models, Molecular , Peptide Library
13.
Virus Res ; 294: 198294, 2021 03.
Article En | MEDLINE | ID: mdl-33422556

Mink enteritis virus (MEV) is a major pathogen inducing acute hemorrhagic enteritis in mink. This study aims to determine the pathogenicity of the isolated MEV strain (SMPV-11) compared with the attenuated MEV strain (MEV-F61) in the mink. The two MEV strains were inoculated in the two mink groups, respectively. Then the clinical symptom, hematological, serological, and histopathological change were evaluated. Our findings showed that there were differences in the clinical features and pathological changes of the SMPV-11 and MEV-F61 in the mink. It indicates that SMPV-11 is a virulent strain, and it can be the potential MEV vaccine strain in the mink.


Mink enteritis virus , Animals , Mink , Mink enteritis virus/genetics , Virulence
14.
Vaccines (Basel) ; 8(1)2020 Mar 09.
Article En | MEDLINE | ID: mdl-32182813

Newcastle disease (ND) is a highly contagious avian disease, causing considerable economic losses to the poultry industry. To obtain a safe, inexpensive, and effective ND vaccine to meet the international trade requirements of differentiating infected from vaccinated animals (DIVA), here we report the production of Oryza sativa recombinant fusion (F) protein in stably transformed transgenic rice seeds via agroinfiltration. The F protein expression level was enhanced 3.6-fold with a genetic background in low glutelin. Inoculation of plant-produced F antigen into Specific Pathogen Free (SPF) chickens markedly elicited neutralizing antibody responses against homologous and heterologous ND virus strains. Two doses of 4.5 µg fully protected chickens from a lethal ND challenge without any clinical symptoms. The mean weight gain of F protein-immunized chickens within 15 days after challenge was significantly higher than that of traditional whole virus vaccine-immunized chickens, thereby obtaining higher economic benefits. Moreover, the sera from the chickens vaccinated with the plant-produced F vaccine did not show reactivity in an immunochromatographic strip targeting the haemagglutinin-neuraminidase protein (HN) protein, and DIVA could be achieved within 10 minutes. Our results demonstrate that the plant-derived F vaccine along with immunochromatographic strips could be useful in the implementation of an NDV eradication program.

15.
PLoS One ; 11(11): e0165793, 2016.
Article En | MEDLINE | ID: mdl-27802320

Aleutian disease (AD) is a common immunosuppressive disease in mink farms world-wide. Since the 1980s, counterimmunoelectrophoresis (CIEP) has been the main detection method for infection with the Aleutian Mink Disease Virus (AMDV). In this study, six peptides derived from the AMDV structural protein VP2 were designed, synthesized, and used as ELISA antigens to detect anti-AMDV antibodies in the sera of infected minks. Serum samples were collected from 764 minks in farms from five different provinces, and analyzed by both CIEP (a gold standard) and peptide ELISA. A peptide designated P1 (415 aa-433 aa) exhibited good antigenicity. A novel ELISA was developed using ovalbumin-linked peptide P1 to detect anti-AMDV antibodies in mink sera. The sensitivity and specificity of the peptide ELISA was 98.0% and 97.5%, respectively. Moreover, the ELISA also detected 342 early-stage infected samples (negative by CIEP and positive by PCR), of which 43.6% (149/342) were true positives. These results showed that the peptide ELISA had better sensitivity compared with CIEP, and therefore could be preferable over CIEP for detecting anti-AMDV antibodies in serological screening.


Aleutian Mink Disease/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Peptide Fragments/metabolism , Animals , Capsid Proteins/chemistry , Capsid Proteins/immunology , Computational Biology , Epitopes, B-Lymphocyte/immunology , Limit of Detection , Mink/virology , Models, Molecular , Peptide Fragments/chemistry , Peptide Fragments/immunology , Protein Conformation
16.
Bing Du Xue Bao ; 31(3): 226-30, 2015 May.
Article Zh | MEDLINE | ID: mdl-26470526

To analyze the molecular mechanisms of cross-host transmission of the Aleutian mink disease vi rus (ADV), the hypervariable region fragment of the VP2 gene of the ADV in Jilin Province (China) was amplified. Sequencing analyses showed diversity at residue 174 by comparison with other VP2 genes in GenBank. The phylogenetic tree indicated that the ADV-JL strain had a close relationship with the highly pathogenic strain from Denmark: ADV-K. Results implied that residue 174 may be associated with ADV infectivity.


Aleutian Mink Disease Virus/genetics , Aleutian Mink Disease/virology , Capsid Proteins/genetics , Aleutian Mink Disease Virus/chemistry , Aleutian Mink Disease Virus/classification , Aleutian Mink Disease Virus/isolation & purification , Amino Acid Sequence , Animals , Capsid Proteins/chemistry , China , Mink , Molecular Sequence Data , Phylogeny , Sequence Alignment , Sequence Analysis
...