Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.616
1.
Angew Chem Int Ed Engl ; : e202406677, 2024 Jun 02.
Article En | MEDLINE | ID: mdl-38825572

The microtubule-associated protein tau participates in neurotransmission regulation via its interaction with synaptic vesicles (SVs). The precise nature and mechanics of tau's engagement with SVs, especially regarding alterations in vesicle dynamics, remain a matter of discussion. We report an electrochemical method using a synapse-mimicking nanopipette to monitor vesicle dynamics induced by tau. A model vesicle of ~30 nm is confined within a lipid-modified nanopipette orifice with a comparable diameter to mimic the synaptic lipid environment. Both tau and phosphorylated tau (p-tau) present two-state dynamic behavior in this biomimetic system, showing typical ionic current oscillation, induced by lipid-tau interaction. The results indicate that p-tau has a stronger affinity to the lipid vesicles in the confined environment, blocking the vesicle movement to a higher degree. Taken together, this method bridges a gap for sensing synaptic vesicle dynamics in a confined lipid environment, mimicking vesicle movement near the synaptic membrane. These findings contribute to understanding how different types of tau protein regulate synaptic vesicle motility and to underlying its functional and pathological behaviours in disease.

2.
J Gene Med ; 26(6): e3708, 2024 Jun.
Article En | MEDLINE | ID: mdl-38837511

BACKGROUND: Lysophosphatidic acid (LPA) is a small bioactive lipid which acts as a potent regulator in various tumor progressions through six G-protein-coupled receptors (LPA1-LPA6). Our previous study demonstrated that the LPA-producing enzyme, autotaxin (ATX), was upregulated in esophageal squamous cell carcinoma (ESCC) and ATX high expression levels indicated a poor prognosis. Esophageal squamous cell carcinoma is a type of malignant tumor which originates from epithelial cells. Its progression can be affected by the interaction between cancer cells and normal cells. However, the impact of LPA on the interaction between esophageal epithelial cells and cancer cells in the development of ESCC remains uncertain. METHODS: MTS and Edu assays were performed to determine ESCC cell proliferation in culture medium (CM) derived from LPA-stimulated esophageal epithelial cells (Het-1a). A wound healing assay, transwell migration and an invasion assay were performed to assess the metastatic ability of ESCC cells. Cytokine array analysis was conducted to detect the differentially secreted cytokines in CM. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were utilized to uncover the pathways and cytokines that are influenced by LPA in ESCC. Immunohistochemical staining was employed to measure the expression of ATX and CCL2 in early-stage ESCC. Quantitative real-time PCR, western blot, enzyme-linked immunosorbent assay and an antibody neutralization assay were employed to measure the mechanism of LPA-mediated communication between epithelial cells and cancer cells. RESULTS: Functional experiments showed that exposing ESCC cancer cells to CM from LPA-treated Het-1a results in promoting proliferation, migration, invasion and epithelial-mesenchymal transition processes. Using cytokine array analysis, we discovered that LPA triggers the release of multiple cytokines from epithelial cells. After screening of the TCGA and GEO databases, CCL2 was identified and found to be correlated with ATX expression in ESCC. Furthermore, CCL2 levels in both mRNA expression and secretion were observed to be upregulated in epithelial cells upon stimulation with LPA. Blocking CCL2 effectively reduced the pro-migration influence of CM derived from LPA-treated Het-1a. Mechanism studies have demonstrated that LPA activated the NF-κB signaling pathway through LPA1/3, ultimately causing an increase in CCL2 expression and secretion in Het-1a. CONCLUSIONS: Our findings, taken together, demonstrate that CM from LPA-treated esophageal epithelial cells plays a significant role in promoting the progression of ESCC, with CCL2 acting as the primary regulator.


Cell Movement , Cell Proliferation , Chemokine CCL2 , Epithelial Cells , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Gene Expression Regulation, Neoplastic , Lysophospholipids , Humans , Lysophospholipids/metabolism , Lysophospholipids/pharmacology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Chemokine CCL2/metabolism , Chemokine CCL2/genetics , Epithelial Cells/metabolism , Epithelial Cells/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Cell Movement/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Disease Progression , Signal Transduction/drug effects , Esophagus/metabolism , Esophagus/pathology , Esophagus/drug effects , Epithelial-Mesenchymal Transition/drug effects
3.
Pediatr Cardiol ; 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38822852

The support has been provided by clinical trials and guidelines for managing patent foramen ovale (PFO) in adults; however, the optimal approach is still unclear for treating PFO in pediatric patients. PFO and its associated clinical syndromes, imaging diagnosis, and management in pediatric patients were analyzed by a comprehensive analysis. Extensive research was performed using electronic databases, including PubMed, Cochrane, Web of Science, and EMBASE. This review includes the studies published until February 1st, 2024. A total of 583 articles were obtained, of which 54 were included in the comprehensive review. Numerous evidences have indicated that a right-to-left shunt through a PFO may be involved in cryptogenic stroke in children, although the connection between migraine and aura has not been substantiated by robust evidence. Children with sickle cell disease and a PFO were at higher risks of paradoxical embolization, rare syndromes caused by PFO could also occur in children such as platypnea-orthodeoxia syndrome, myocardial infarction, and decompression sickness. Contrast transthoracic echocardiography was deemed the most appropriate examination for children due to its favorable transthoracic windows, eliminating the need for anesthesia. This review suggested that the additional treatment was not needed as no evidence was provided for potential future complications linked to isolated PFO in children. For children facing unique circumstances related to PFO, a customized interdisciplinary consultation is essential prior to considering medical interventions.

4.
Nat Commun ; 15(1): 4703, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38830868

Nuclear factor erythroid 2-related factor 2 (NRF2) hyperactivation has been established as an oncogenic driver in a variety of human cancers, including non-small cell lung cancer (NSCLC). However, despite massive efforts, no specific therapy is currently available to target NRF2 hyperactivation. Here, we identify peptidylprolyl isomerase A (PPIA) is required for NRF2 protein stability. Ablation of PPIA promotes NRF2 protein degradation and blocks NRF2-driven growth in NSCLC cells. Mechanistically, PPIA physically binds to NRF2 and blocks the access of ubiquitin/Kelch Like ECH Associated Protein 1 (KEAP1) to NRF2, thus preventing ubiquitin-mediated degradation. Our X-ray co-crystal structure reveals that PPIA directly interacts with a NRF2 interdomain linker via a trans-proline 174-harboring hydrophobic sequence. We further demonstrate that an FDA-approved drug, cyclosporin A (CsA), impairs the interaction of NRF2 with PPIA, inducing NRF2 ubiquitination and degradation. Interestingly, CsA interrupts glutamine metabolism mediated by the NRF2/KLF5/SLC1A5 pathway, consequently suppressing the growth of NRF2-hyperactivated NSCLC cells. CsA and a glutaminase inhibitor combination therapy significantly retard tumor progression in NSCLC patient-derived xenograft (PDX) models with NRF2 hyperactivation. Our study demonstrates that targeting NRF2 protein stability is an actionable therapeutic approach to treat NRF2-hyperactivated NSCLC.


Carcinoma, Non-Small-Cell Lung , Kelch-Like ECH-Associated Protein 1 , Lung Neoplasms , NF-E2-Related Factor 2 , Protein Stability , Ubiquitination , NF-E2-Related Factor 2/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Animals , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Mice , Cell Line, Tumor , Disease Progression , Proteolysis , Mice, Nude , Female , NIMA-Interacting Peptidylprolyl Isomerase
5.
J Clin Periodontol ; 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38839576

AIM: To explore the levels of neutrophil extracellular traps (NETs) in patients with periodontitis and examine their effects on keratinization, barrier function of human gingival keratinocytes (HGKs) and the associated mechanisms. MATERIALS AND METHODS: Saliva, gingival crevicular fluid (GCF), clinical periodontal parameters and gingival specimens were collected from 10 healthy control subjects and 10 patients with stage II-IV periodontitis to measure the NET levels. Subsequently, mRNA and protein levels of keratinization and barrier indicators, as well as intracellular calcium and epithelial barrier permeability, were analysed in HGKs after NET stimulation. RESULTS: The study showed that NET levels significantly elevated in patients with periodontitis, across multiple specimens including saliva, GCF and gingival tissues. Stimulation of HGKs with NETs resulted in a decrease in the expressions of involucrin, cytokeratin 10, zonula occludens 1 and E-cadherin, along with decreased intracellular calcium levels and increased epithelial barrier permeability. Furthermore, the inhibition of keratinization by NETs is ERK-KLF4-dependent. CONCLUSIONS: This study indicates that NETs impair the barrier function of HGKs and suppress keratinization through ERK/KLF4 axis. These findings provide potential targets for therapeutic approaches in periodontitis to address impaired gingival keratinization.

6.
Article En | MEDLINE | ID: mdl-38843428

Objective: To investigate the efficacy of artificial knee arthroplasty in conjunction with internal fracture fixation for treating knee osteoarthritis and a femoral condyle fracture. Methods: From January 2013 to June 2020, the researchers' department admitted 11 patients with femoral condyle fractures in combination with knee osteoarthritis. Three of the patients were males; 8 were females. They ranged in age from 62 to 76 years, with an average age of 69.2 years. Five patients were injured in traffic accidents, 6 were related to falls. Before the incidents, all patients had varying degrees of flexion inversion deformity and moderate to severe osteoarthritis in their knee joints. The fractures were of two types: 3 were epicondylar fractures, and 8 were medial femoral condyle fractures. To treat the combined condition of osteoarthritis and fractured femoral condyles, all patients underwent artificial knee joint replacement along with internal fixation with a single treatment. Knee radiographs and joint mobility assessments were performed during the follow-up period and were measured using the Hospital for Special Surgery (HSS) knee function score. Results: All patients were followed up from 18 to 105 months with a mean duration of (52.5±2.6) months. Significant differences in knee mobility and HSS ratings at 1 month and 1 year postoperatively compared favorably to the condition before surgery. HSS scores at the 1-year postoperative follow-up were excellent in 8 cases, good in 2, acceptable in 1, and poor in 0 cases. Conclusion: Artificial knee joint replacement combined with fracture internal fixation has good clinical efficacy in treating osteoarthritis of the knee joint combined with femoral condyle fracture. After surgery, patients resumed weight-bearing activities early, reducing the likelihood of complications and avoiding postoperative pain. This approach shortened the treatment period and enhanced the overall quality of life.

7.
J Environ Sci (China) ; 145: 28-49, 2024 Nov.
Article En | MEDLINE | ID: mdl-38844322

Microbial fuel cells (MFCs) have become more prevalent in groundwater remediation due to their capacity for power generation, removal of pollution, ease of assembly, and low secondary contamination. It is currently being evaluated for practical application in an effort to eliminate groundwater pollution. However, a considerable majority of research was conducted in laboratories. But the operational circumstances including anaerobic characteristics, pH, and temperature vary at different sites. In addition, the complexity of contaminants and the positioning of MFCs significantly affect remediation performance. Taking the aforementioned factors into consideration, this review summarizes a bibliography on the application of MFCs for the remediation of groundwater contamination during the last ten decades and assesses the impact of environmental conditions on the treatment performance. The design of the reactor, including configuration, dimensions, electrodes, membranes, separators, and target contaminants are discussed. This review aims to provide practical guidance for the future application of MFCs in groundwater remediation.


Bioelectric Energy Sources , Environmental Restoration and Remediation , Groundwater , Groundwater/chemistry , Environmental Restoration and Remediation/methods , Water Pollutants, Chemical/analysis , Water Purification/methods
8.
Opt Lett ; 49(9): 2273-2276, 2024 May 01.
Article En | MEDLINE | ID: mdl-38691697

As a complex anisotropic medium, variation in birefringence within biological tissues is closely associated with numerous physiological behaviors and phenomena. In this Letter, we propose a polarization feature fusion method and corresponding polarimetric parameters, which exhibit excellent performance of capturing the birefringence dynamic variation process in complex anisotropic media. By employing the feature fusion method, we combine and transform polarization basis parameters (PBPs) to derive fused polarization feature parameters (FPPs) with explicit expressions. Subsequently, we conduct Monte Carlo (MC) simulation to demonstrate the effectiveness of the proposed FPPs from two variation dimensions of birefringence direction θ and modulus Δn. Leveraging mathematical modeling and linear transformations, we investigate and abstract their response patterns concerning θ and Δn. Finally, the experiments confirm that the FPPs show superior adaptability and interpretability in characterizing the birefringence dynamic process of turbid media. The findings presented in this study provide new, to the best of our knowledge, methodological insights of information extraction for computational polarimetry in biomedical research.

9.
Poult Sci ; 103(7): 103783, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38713987

Heterosis has been widely utilized in chickens. The nonadditive inheritance of genes contributes to this biological phenomenon. However, the role of circRNAs played in the heterosis is poorly determined. In this study, we observed divergent heterosis for residual feed intake (RFI) between 2 crossbreds derived from a reciprocal cross between White Leghorns and Beijing You chickens. Then, circRNA landscape for 120 samples covering the hypothalamus, liver, duodenum mucosa and ovary were profiled to elucidate the regulatory mechanisms of heterosis. We detected that a small proportion of circRNAs (7.83-20.35%) were additively and non-additively expressed, in which non-additivity was a major inheritance of circRNAs in the crossbreds. Tissue-specific expression of circRNAs was prevalent across 4 tissues. Weighted gene co-expression network analysis revealed circRNA-mRNA co-expression modules associated with feed intake and RFI in the hypothalamus and liver, and the co-expressed genes were enriched in oxidative phosphorylation pathway. We further identified 8 nonadditive circRNAs highly correlated with 16 nonadditive genes regulating negative heterosis for RFI in the 2 tissues. Circ-ITSN2 was validated in the liver tissue for its significantly positive correlation with PGPEP1L. Moreover, the bioinformatic analysis indicated that candidate circRNAs might be functioned by binding the microRNAs and interacting with the RNA binding proteins. The integration of multi-tissue transcriptome firstly linked the association between tissue-specific circRNAs and the heterosis for feed intake and efficiency in chicken, which provide novel insights into the molecular mechanism underlying heterosis for feed efficiency. The validated circRNAs can act as potential biomarkers for predicting RFI and its heterosis.

10.
Anal Chem ; 96(19): 7780-7786, 2024 May 14.
Article En | MEDLINE | ID: mdl-38695093

Development of highly efficient, heavy-metal-free electrochemiluminescence (ECL) materials is attractive but still challenging. Herein, we report an aggregation-induced delayed ECL (AIDECL) active organic dot (OD) composed of a tert-butoxy-group-substituted benzophenone-dimethylacridine compound, which shows high ECL efficiency. The resultant ODs exhibit 2.1-fold higher ECL efficiency compared to control AIDECL-active ODs. Molecular stacking combined with theoretical calculations suggests that tert-butoxy groups effectively participate in the intermolecular interactions, further inhibiting the molecular motions in the aggregated states and thus accelerating radiative decay. On the basis of these ODs exhibiting excellent ECL performance, a proof-of-concept biosensor is constructed for the detection of miR-16 associated with Alzheimer's disease, which demonstrates excellent detection ability with the limit of detection of 1.7 fM. This work provides a new approach to improve the ECL efficiency and enriches the fundamental understanding of the structure-property relationship.

11.
Alpha Psychiatry ; 25(1): 63-67, 2024 Jan.
Article En | MEDLINE | ID: mdl-38799486

Objective: Stathmin 1 (Stmn1) is a neuronal growth-associated protein which was found to be involved in fear processing both in animals and humans. Moreover, it has been demonstrated that 2 single nucleotide polymorphisms (SNPs) of the Stmn1 gene (rs182455 and rs213641) significantly impacted individual fear and anxiety responses in German. However, there have been no reports on the correlation between Stmn1 SNPs and anxiety in Chinese. The present study thus aimed to explore such correlation. Methods: A sample of 567 healthy Han Chinese adults were genotyped for the Stmn1 SNP, namely rs182455, using polymerase chain reaction and restriction fragment length polymorphism analysis. Anxiety was assessed by the Chinese version of 40-item State-Trait Anxiety Inventory (STAI), which measures 2 anxiety dimensions, state and trait anxiety. Results: The numbers of CC, CT, and TT genotypes of rs182455 polymorphism were 227 (40.0%), 263 (46.4%), and 77 (13.6%), respectively. The genotype distribution did not deviate from the Hardy-Weinberg equilibrium (χ 2 = 0.004, P = .953). There were no significant differences in either state or trait anxiety among the 3 rs182455 genotype groups (F = 0.457, 0.415, P = .634, .660), between the 2 dominant model groups (t = 0.865, -0.195, P = .388, .845), or between the 2 recessive model groups (t = 0.106, 0.906, P = .916, .365). Moreover, no significant gender-specific differences in any STAI scores were found among the rs182455 genotype groups (all P > .05). Conclusion: No evidence was demonstrated for the association of the Stmn1 gene polymorphism rs182455 with either trait or state anxiety in Chinese adults.

12.
Mater Today Bio ; 26: 101090, 2024 Jun.
Article En | MEDLINE | ID: mdl-38800564

Hyperpigmentation (HP) is an unfavorable skin disease that typically caused by injury, inflammation, or photoaging and leads to numerous physical and psychological issues in patients. Recently, development and application of natural whitening substances, particularly compound curcumin (CUR), is one of the most prevalent treatments for HP. However, it is still a formidable challenge to improve the percutaneous delivery of CUR due to its inadequate solubility in water and excellent barrier function of skin. To overcome the limitations of conventional delivery and increase the percutaneous absorption of CUR, the efficient delivery of CUR is urgently required. Herein, we developed a new malic acid-sorbitol deep eutectic solvent (MS/DES) gel microneedle loaded with CUR as a transdermal delivery system for HP treatment. The MS/DES gel produces three-dimensional (3D) network structure by self-assembly of hydrogen bond interactions, which conferred the CUR-MS/DES-GMN with sufficient mechanical properties to successfully penetrate skin tissue while also helping to enhance the drug's release rate. The CUR-MS/DES-GMN exhibit high biocompatibility and mechanical property in vivo of mice. The zebrafish experiments also show that CUR-MS/DES gel has significant effect of anti-pigmentation. Therefore, the designed CUR-MS/DES-GMN system provides a novel strategy for HP treatment based on self-assembly of naturally molecules.

13.
Childs Nerv Syst ; 2024 May 28.
Article En | MEDLINE | ID: mdl-38802706

PURPOSE: Genetic mutations stand as pivotal factors leading to the occurrence of embryonal tumor with multilayered rosettes (ETMR). This study aims to identify improved treatment approaches by unraveling the genetic drivers and immune infiltration in ETMR. METHODS: Two siblings with ETMR, treated at the General Hospital of Ningxia Medical University, were enrolled. Diagnosis involved MRI, Hematoxylin and Eosin (HE), and immunohistochemical (IHC) staining. Differentially expressed genes (DEGs) in ETMR were identified using GSE122077 and GSE14296 datasets. GO and KEGG analyses were used to determine ETMR-related pathways. Whole exome sequencing (WES) was utilized to annotate genetic variations in ETMR. Core genes, identified by protein-protein interaction (PPI), formed a diagnostic model evaluated by Logistic Regression. Single-sample Gene Set Enrichment Analysis (ssGSEA) assessed immune infiltration in ETMR, examining correlations between immune cells and core genes. RESULTS: Two siblings were diagnosed with ETMR. In ETMR, 135 DEGs were identified, of which 25 genes were annotated with 28 mutation sites. Moreover, ETMR-related pathways included cell cycle, synaptic functions, and neurodegeneration. Three ETMR-related core genes (ALB, PSMD1, and PAK2) were screened by protein-protein interaction (PPI). The diagnostic model constructed using these genes demonstrated an AUC value of 0.901 (95% CI: 0.811-0.991) in the training set, indicating accurate predictions in ETMR. Enhanced ssGSEA scores for 16 immune cells in ETMR tissues suggested a strong immune response. CONCLUSION: This study identifies diagnostic models associated with three core variant genes (ALB, PSMD1, PAK2) and enhanced immune cell activity in ETMR. It reveals crucial genetic features and significant immune responses in ETMR.

14.
Article En | MEDLINE | ID: mdl-38780843

Plants can stimulate the microbes to degrade ubiquitous petroleum hydrocarbons (PHCs), which has prompted a novel view on rhizoremediation. In the present study, the degradation rate of PHCs was investigated and 16S rRNA gene analysis was performed to investigate the PHC-degrading bacteria in petroleum-contaminated soil with different plants. Mirabilis jalapa (M. jalapa) has a higher PHC degradation rate than Lolium perenne (L. perenne) under petroleum contamination. The bacterial diversity in rhizospheric soil was decreased but the relative abundance of Actinobacteriota, Proteobacteria, and Candidatus Saccharibacteria were significant increased on 45 days petroleum-contaminated rhizospheric soil. In addition, the relative expression of PHC degradation-related genes, the content of malic acid and citric acid of the root exudates in the two plants was significantly increased in response to petroleum stress. The content of citric acid increased 11.9 times in M. jalapa and 3.4 times in L. perenne, respectively, in response to petroleum stress. These results indicate that M. jalapa changes the hydrocarbon-degrading microbial community to enhance the degradation of PHCs by root exudates and phytostimulation.

15.
Comput Biol Med ; 177: 108574, 2024 May 11.
Article En | MEDLINE | ID: mdl-38772102

The immune dysregulation associated with carbapenem-resistant Klebsiella pneumoniae (CRKP) severity was investigated through single-cell RNA sequencing (scRNA-seq) of 5 peripheral blood samples from 3 patients with moderate and severe CRKP pneumonia. Additionally, scRNA-seq datasets from two individuals with COVID-19 were included for comparative analysis. The dynamic characterization and functional properties of each immune cell type were examined by delineating the transcriptional profiles of immune cells throughout the transition from moderate to severe conditions. Overall, most immune cells in CRKP patients exhibited a robust interferon-α response and inflammatory reaction compared to healthy controls, mirroring observations in COVID-19 patients. Furthermore, cell signatures associated with NK cells, macrophages, and monocytes were identified in CRKP progression including PTPRCAP for NK cells, C1QB for macrophages, and S100A12 for both macrophages and monocytes. In summary, this study offers a comprehensive scRNA-seq resource for illustrating the dynamic immune response patterns during CRKP progression, thereby shedding light on the associations between CRKP and COVID-19.

16.
Quant Imaging Med Surg ; 14(5): 3581-3592, 2024 May 01.
Article En | MEDLINE | ID: mdl-38720848

Background: One in four individuals with Parkinson's disease (PD) experience cognitive impairment (CI). However, few practical models integrating clinical and neuroimaging biomarkers have been developed to address CI in PD. This study aimed to evaluate the correlation between circulating neuron-specific enolase (NSE) levels, substantia nigra hyperechogenicity (SNH), and cognitive function in PD and to develop a nomogram based on clinical and neuroimaging biomarkers for predicting CI in patients with PD. Methods: A total of 385 patients with PD who underwent transcranial sonography (TCS) from January 2021 to December 2022 at Beijing Tiantan Hospital, Capital Medical University, were recruited as the training cohort. For validation, 165 patients with PD treated from January 2023 to December 2023 were enrolled. Data for SNH, plasma NSE, and other clinical measures were collected, and cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). Logistic regression analysis was employed to select potential risk factors and establish a nomogram. The receiver operating characteristic curve and calibration curve were generated to evaluate the performance of the nomogram. Results: Patients with PD exhibiting CI displayed advanced age, elevated Unified PD Rating Scale-III (UPDRS-III) score, an increased percentage of SNH, higher levels of plasma NSE and homocysteine (Hcy), a larger SNH area, and lower education levels compared to PD patients without CI. Gender [odds ratio (OR) =0.561, 95% confidence interval (CI): 0.330-0.954, P=0.03], age (OR =1.039; 95% CI: 1.011-1.066; P=0.005), education level (OR =0.892; 95% CI: 0.842-0.954; P<0.001), UPDRS-III scores (OR =1.026; 95% CI: 1.009-1.043; P=0.003), plasma NSE concentration (OR =1.562; 95% CI: 1.374-1.776; P<0.001), and SNH (OR =0.545; 95% CI: 0.330-0.902; P=0.02) were independent predictors of CI in patients with PD. A nomogram developed using these six factors yielded a moderate discrimination performance with an area under the curve (AUC) of 0.823 (95% CI 0.781-0.864; P<0.001). The calibration curve demonstrated acceptable agreement between predicted outcomes and actual values. Validation further confirmed the reliability of the nomogram, with an AUC of 0.864 (95% CI: 0.805-0.922; P<0.001). Conclusions: The level of NSE in plasma and the SNH assessed by TCS are associated with CI in patients with PD. The proposed nomogram has the potential to facilitate the detection of cognitive decline in individuals with PD.

17.
Heliyon ; 10(9): e30330, 2024 May 15.
Article En | MEDLINE | ID: mdl-38726177

Background: Colon cancer (CC) stem cells can self-renew as well as expand, thereby promoting tumor progression and conferring resistance to chemotherapeutic agents. The acetyltransferase NAT10 mediates N4-acetylcytidine (ac4C) modification, which in turn drives tumorigenesis, metastasis, stemness properties maintenance, and cell fate decisions. Nonetheless, the specific involvement of ac4C modification mediated by NAT10 in regulating stemness and chemosensitivity in CC remains undetermined. Methods: The levels of NAT10 in normal colon and chemoresistant CC tissues were determined utilizing quantitative real-time polymerase chain reaction alongside immunohistochemistry. Assessing cancer cell stemness and chemosensitivity was conducted by various methods including spheroid and colony formation, western blotting, and flow cytometry. RNA-Seq was used to identify target genes, and RNA immunoprecipitation analysis was used to explore the potential mechanisms. Results: We observed NAT10 overexpression and increased ac4C modification levels in chemoresistant CC tissues. The in vivo and in vitro analysis findings suggested that NAT10 promoted CC cell stemness while suppressing their chemosensitivity. Conversely, Remodelin, a NAT10-specific inhibitor, enhanced CC cell chemosensitivity. Mechanistically, NAT10 increased the level of NANOGP8 ac4C modification and promoted NANOGP8 mRNA stability. Conclusions: NAT10 promotes the maintenance of stemness and chemoresistance in CC cells by augmenting the mRNA stability of NANOGP8. The inhibition of NAT10 via Remodelin improves chemotherapeutic efficacy and impedes CC progression.

18.
J Sci Food Agric ; 2024 May 21.
Article En | MEDLINE | ID: mdl-38770921

BACKGROUND: Bamboo leaf flavonoids (BLF) are the main bioactive ingredients in bamboo leaves. They have antioxidant, anti-inflammatory, antibacterial, and other effects. In this study, the effects of dietary BLF on growth performance, immune response, antioxidant capacity, and intestinal microbiota of broilers were investigated. A total of 288 broilers were divided into three groups with eight replicates and 12 birds in each replicate. Broilers were fed a basic diet or the basic diet supplemented with 1000 or 2000 mg kg-1 BLF for 56 days. RESULTS: The results showed that supplementation of BLF increased body weight (BW) and average daily weight gain (ADG), and reduced average daily feed intake (ADFI) (P < 0.05). The serum immunoglobulin A (IgA), immunoglobulin M (IgM), and interleukin 10 (IL-10) content of broilers in the BLF1000 group was increased and the interleukin 1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) content was decreased (P < 0.05). The levels of IgM and IL-10 in jejunum mucosa were found to be enhanced by BLF (P < 0.05). The BLF1000 group exhibited a significant reduction in the concentration of TNF-α (P < 0.05). Serum and jejunum mucosa total antioxidant capacity (T-AOC) levels in the BLF1000 group were increased (P < 0.05). The serum catalase (CAT) and glutathione peroxidase (GSH-Px) effects of the BLF1000 group and serum CAT effects of BLF2000 group were increased (P < 0.05). The CON group demonstrated a lower relative abundance of Christensenellaceae_R-7_group and Oscillibacter than the BLF group (P < 0.05). CONCLUSION: Dietary BLF inclusion enhanced the growth performance, immune, and antioxidant functions, improved the intestinal morphology, and ameliorated the intestinal microflora structure in broiler. Adding 1000 mg kg-1 BLF to the broiler diet can be considered as an effective growth promoter. © 2024 Society of Chemical Industry.

19.
Ear Hear ; 2024 May 24.
Article En | MEDLINE | ID: mdl-38783421

OBJECTIVES: This study aimed to comprehensively investigate the neuroanatomical alterations associated with idiopathic Ménière's disease (MD) using voxel-based morphometry and surface-based morphometry techniques. The primary objective was to explore nuanced changes in gray matter volume, cortical thickness, fractal dimension, gyrification index, and sulcal depth in MD patients compared with healthy controls (HC). Additionally, we sought to develop a machine learning classification model utilizing these neuroimaging features to effectively discriminate between MD patients and HC. DESIGN: A total of 55 patients diagnosed with unilateral MD and 70 HC were enrolled in this study. Voxel-based morphometry and surface-based morphometry were employed to analyze neuroimaging data and identify structural differences between the two groups. The selected neuroimaging features were used to build a machine learning classification model for distinguishing MD patients from HC. RESULTS: Our analysis revealed significant reductions in gray matter volume in MD patients, particularly in frontal and cingulate gyri. Distinctive patterns of alterations in cortical thickness were observed in brain regions associated with emotional processing and sensory integration. Notably, the machine learning classification model achieved an impressive accuracy of 84% in distinguishing MD patients from HC. The model's precision and recall for MD and HC demonstrated robust performance, resulting in balanced F1-scores. Receiver operating characteristic curve analysis further confirmed the discriminative power of the model, supported by an area under the curve value of 0.92. CONCLUSIONS: This comprehensive investigation sheds light on the intricate neuroanatomical alterations in MD. The observed gray matter volume reductions and distinct cortical thickness patterns emphasize the disease's impact on neural structure. The high accuracy of our machine learning classification model underscores its diagnostic potential, providing a promising avenue for identifying MD patients. These findings contribute to our understanding of MD's neural underpinnings and offer insights for further research exploring the functional implications of structural changes.

20.
Sci Adv ; 10(21): eadk7557, 2024 May 24.
Article En | MEDLINE | ID: mdl-38787949

Information metasurface has shown great potential in wireless communications owing to its ability to flexibly control electromagnetic waves. However, it is still a big challenge to achieve high-security and large-channel capacity wireless communications by a simple system. Here, we propose a space-polarization-division multiplexing secure wireless communication system with information camouflage capability based on the information metasurface, which can realize multichannel encrypted wireless communications with different polarization coding strategies independently and simultaneously. A polarization mask key is introduced to encrypt the target message, and the cipher message is further concealed behind a cover image with steganography and sent to the user by using the polarization modulation strategy. Different polarization mask keys can be adopted in each individual communication by changing the polarization coding strategy to enhance the system security. The proposed scheme integrates computational algorithm encryption and physical layer security together and thus has the advantages of high security, large channel capacity, and strong camouflage ability.

...