Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 964
Filter
1.
J Inflamm Res ; 17: 4175-4186, 2024.
Article in English | MEDLINE | ID: mdl-38979433

ABSTRACT

Purpose: Microwave ablation (MWA) is a minimally invasive technique for treating lung cancer. It can induce immune response; however, its effect on the immune microenvironment in tumor-draining lymph nodes (TdLN) is not well understood. This study aims to identify changes in the immune microenvironment in TdLN following MWA in a Lewis lung cancer (LLC) mouse model. Methods: LLC mouse model was established and followed by MWA. TdLN were collected at various time points, including pre-MWA and days 1, 2, 4, and 8 post-MWA. Flow cytometry was used to determine the frequencies of CD4+ T cells, CD8+ T cells, regulatory T (Treg) cells, natural killer (NK) cells, dendritic cells (DCs) and other immune cells in the TdLN. Certain cytokines were also detected. Results: Compared with pre-MWA, the frequency of CD4+ T cells significantly increased from day 1 to day 8 post-MWA. The frequency of CD8+ T cells decreased significantly on days 2 and 4, but no significant changes occurred on days 1 and 8. Significant decreases in the frequencies of Treg cells and Klrg1+ Treg cells were observed from day 1 to day 4. On days 4 and 8, there was a significant increase in the frequency of NK cells. The frequency of resident cDC2 significantly increased on day 4, whereas CD11b+ migratory cDCs increased on day 1. Additionally, on day 4, a notable rise was observed in the frequency of NK cells secreting IFN-γ, while on day 8, there was a significant increase in the frequency of CD8+ T cells secreting both IFN-γ and TNF-α. Conclusion: MWA of lung cancer can alter the immune microenvironment in the TdLN, triggering immune responses. These changes are particularly evident and intricate within the initial 4 days post-MWA. Treatment combined with MWA within a certain period may significantly enhance anti-tumor immunity.

2.
Molecules ; 29(13)2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38999165

ABSTRACT

The copper-cobalt metal oxide composite magnesium oxide catalyst loaded with Ru has achieved the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to the bio-based polyester monomer 2,5-furandicarboxylic acid (FDCA) under base-free conditions. Several Ru/Cu-Co-O·MgO catalysts were prepared, with Cu-Co-O being a combination of CuO and Co3O4. The catalyst's activity was boosted by the synergistic interaction between copper and cobalt, as well as an optimal copper-to-cobalt molar ratio. Optimal catalytic activity was observed in the Ru4/Cu1-Co1-O·MgO catalyst, loaded with 4 wt% Ru when copper-to-cobalt molar ratio of 1:1 and magnesium oxide compounding amount of 6 mmol were employed. The inclusion of MgO and the load of Ru not only expanded the specific surface area of the catalyst but also heightened its basicity. Additionally, the presence of loaded Ru improved the catalyst's reducibility at low temperatures. In aqueous solution under oxygen pressure, the conversion rate of HMF achieved 100%, and the yield of FDCA was 86.1%. After five reaction cycles, examining the catalyst and solution revealed that Ru nanoparticles resisted leaching or oxidation, and MgO exhibited only slight dissolution. The green separation of the product was achieved using semi-preparative liquid chromatography, selectively collecting the FDCA-containing solution by exploiting variations in interactions between solutes and the stationary/mobile phases. The subsequent steps involved rotary evaporation and drying, resulting in FDCA powder with a purity exceeding 99%. Notably, this approach eliminated the need to introduce concentrated hydrochloric acid into the system for FDCA separation, providing a novel method for synthesising powdered FDCA.

3.
Heliyon ; 10(12): e33137, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39022033

ABSTRACT

Benzo (a) pyrene is a highly carcinogenic polycyclic aromatic compound, difficult to be degraded, widely present in the environment. However, there is currently no cost-effective and efficient method for removing benzo (a) pyrene. In this study, a feasible method was introduced to cheaply and efficiently adsorb benzo(a)pyrene using chromatin. Scanning electron microscopy analysis showed that the chromatin had a filamentary fiber structure. Fourier transform infrared (FTIR) spectroscopy showed that benzo(a)pyrene formed a bond with the chromatin. Effective binding was confirmed using fluorescence microscopy. Influence factors exploration experiments indicated that the amount of benzo(a)pyrene adsorbed by chromatin was 0.16 mg g-1. The adsorption process of BaP by chromatin is consistent with a pseudo-second-order kinetics model of adsorption. The adsorption isotherm model is consistent with the langmuir isotherm model.This study suggests that chromatin can be utilized as a ordinary and high efficiency adsorbent for removing benzo(a)pyrene and can be utilized in further studies.

4.
Sci Adv ; 10(27): eadk8958, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959315

ABSTRACT

The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.


Subject(s)
Epithelial Cells , Receptors, Notch , Signal Transduction , Animals , Epithelial Cells/metabolism , Female , Receptors, Notch/metabolism , Humans , Mice , Cell Lineage , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Tumor Suppressor Proteins/metabolism , Tumor Suppressor Proteins/genetics , Cell Differentiation , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/genetics
5.
Angew Chem Int Ed Engl ; : e202409310, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39001611

ABSTRACT

Allylic amines are prevalent and vital structural components present in many bioactive compounds and natural products. Additionally, they serve as valuable intermediates and building blocks, with wide-ranging applications in organic synthesis. However, direct α-C(sp3)-H alkenylation of feedstock amines, particularly for the preparation of α-alkenylated cyclic amines, has posed a longstanding challenge. Herein, we present a general, mild, operationally simple, and transition-metal-free α-alkenylation of various readily available amines with alkenylborate esters in excellent E/Z - and diastereoselectivities. This method features good compatibility with water and oxygen, broad substrate scope, and excellent functional group tolerance, thereby enabling the late-stage modification of various complex molecules. Mechanistic studies suggest that the formation of a photoactive electron donor-acceptor complex between 2-iodobenzamide and the tetraalkoxyborate anion, which subsequently undergoes photoinduced single electron transfer and intramolecular 1,5-hydrogen atom transfer to generate the crucial α-amino radicals, is the key to success of this chemistry.

6.
Crit Rev Food Sci Nutr ; : 1-22, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39015031

ABSTRACT

Food quality and safety problems caused by inefficient control in the food chain have significant implications for human health, social stability, and economic progress and optical sensor arrays (OSAs) can effectively address these challenges. This review aims to summarize the recent applications of nanomaterials-based OSA for food quality and safety visual monitoring, including colourimetric sensor array (CSA) and fluorescent sensor array (FSA). First, the fundamental properties of various advanced nanomaterials, mainly including metal nanoparticles (MNPs) and nanoclusters (MNCs), quantum dots (QDs), upconversion nanoparticles (UCNPs), and others, were described. Besides, the diverse machine learning (ML) and deep learning (DL) methods of high-dimensional data obtained from the responses between different sensing elements and analytes were presented. Moreover, the recent and representative applications in pesticide residues, heavy metal ions, bacterial contamination, antioxidants, flavor matters, and food freshness detection were comprehensively summarized. Finally, the challenges and future perspectives for nanomaterials-based OSAs are discussed. It is believed that with the advancements in artificial intelligence (AI) techniques and integrated technology, nanomaterials-based OSAs are expected to be an intelligent, effective, and rapid tool for food quality assessment and safety control.

7.
BMC Musculoskelet Disord ; 25(1): 540, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997743

ABSTRACT

BACKGROUND: Extracellular matrix (ECM) remodeling in skeletal muscle is a significant factor in the development of sarcopenia. This study aims to evaluate changes in ECM remodeling in the lumbar paravertebral muscles of sarcopenic rats using diffusion-tensor magnetic resonance imaging (DT-MRI) and compare them with histology. METHODS: Twenty 6-month-old female Sprague Dawley rats were randomly divided into the dexamethasone (DEX) group and the control (CON) group. Both groups underwent 3.0T MRI scanning, including Mensa, T2WI, and DT-MRI sequences. The changes in muscle fibers and extracellular matrix (ECM) of the erector spinal muscle were observed using hematoxylineosin and sirius red staining. The expressions of collagen I, III, and fibronectin in the erector spinae were detected by western blot. Pearson correlation analysis was employed to assess the correlation between MRI quantitative parameters and corresponding histopathology markers. RESULTS: The cross-sectional area and fractional anisotropy values of the erector spinae in the DEX group rats were significantly lower than those in the CON group (p < 0.05). Hematoxylin eosin staining revealed muscle fiber atrophy and disordered arrangement in the DEX group, while sirius red staining showed a significant increase in collagen volume fraction in the DEX group. The western blot results indicate a significant increase in the expression of collagen I, collagen III, and fibronectin in the DEX group (p < 0.001 for all). Correlation coefficients between fractional anisotropy values and collagen volume fraction, collagen I, collagen III, and fibronectin were - 0.71, -0.94, -0.85, and - 0.88, respectively (p < 0.05 for all). CONCLUSIONS: The fractional anisotropy value is strongly correlated with the pathological collagen volume fraction, collagen I, collagen III, and fibronectin. This indicates that DT-MRI can non-invasively evaluate the changes in extracellular matrix remodeling in the erector spinal muscle of sarcopenia. It provides a potential imaging biomarker for the diagnosis of sarcopenia.


Subject(s)
Extracellular Matrix , Rats, Sprague-Dawley , Sarcopenia , Animals , Female , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Rats , Sarcopenia/diagnostic imaging , Sarcopenia/metabolism , Sarcopenia/pathology , Diffusion Tensor Imaging/methods , Paraspinal Muscles/diagnostic imaging , Paraspinal Muscles/pathology , Paraspinal Muscles/metabolism , Fibronectins/metabolism , Disease Models, Animal , Dexamethasone
8.
Thromb J ; 22(1): 56, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943162

ABSTRACT

BACKGROUND: Hypercoagulability emerges as a central pathological feature and clinical complication in nephrotic syndrome. Increased platelet activation and aggregability are closely related to hypercoagulability in nephrotic syndrome. Monocyte-platelet aggregates (MPAs) have been proposed to represent a robust biomarker of platelet activation. The aim of this study was to investigate levels of the circulating MPAs and MPAs with the different monocyte subsets to evaluate the association of MPAs with hypercoagulability in nephrotic syndrome. METHODS: Thirty-two patients with nephrotic syndrome were enrolled. In addition, thirty-two healthy age and sex matched adult volunteers served as healthy controls. MPAs were identified by CD14 monocytes positive for CD41a platelets. The classical (CD14 + + CD16-, CM), the intermediate (CD14 + + CD16+, IM) and the non-classical (CD14 + CD16++, NCM) monocytes, as well as subset specific MPAs, were measured by flow cytometry. RESULTS: Patients with nephrotic syndrome showed a higher percentage of circulating MPAs as compared with healthy controls (p < 0.001). The percentages of MPAs with CM, IM, and NCM were higher than those of healthy controls (p = 0.012, p < 0.001 and p < 0.001, respectively). Circulating MPAs showed correlations with hypoalbuminemia (r=-0.85; p < 0.001), hypercholesterolemia (r = 0.54; p < 0.001), fibrinogen (r = 0.70; p < 0.001) and D-dimer (r = 0.37; p = 0.003), but not with hypertriglyceridemia in nephrotic syndrome. The AUC for the prediction of hypercoagulability in nephrotic syndrome using MPAs was 0.79 (95% CI 0.68-0.90, p < 0.001). The sensitivity of MPAs in predicting hypercoagulability was 0.71, and the specificity was 0.78. CONCLUSION: Increased MPAs were correlated with hypercoagulability in nephrotic syndrome. MPAs may serve as a potential biomarker for thrombophilic or hypercoagulable state and provide novel insight into the mechanisms of anticoagulation in nephrotic syndrome.

9.
Exp Mol Med ; 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38945956

ABSTRACT

Angiotensin II (AngII) induces the contraction and proliferation of vascular smooth muscle cells (VSMCs). AngII activates phospholipase C-ß (PLC-ß), thereby inducing Ca2+ mobilization as well as the production of reactive oxygen species (ROS). Since contraction is a unique property of contractile VSMCs, signaling cascades related to the proliferation of VSMCs may differ. However, the specific molecular mechanism that controls the contraction or proliferation of VSMCs remains unclear. AngII-induced ROS production, migration, and proliferation were suppressed by inhibiting PLC-ß3, inositol trisphosphate (IP3) receptor, and NOX or by silencing PLC-ß3 or NOX1 but not by NOX4. However, pharmacological inhibition or silencing of PLC-ß3 or NOX did not affect AngII-induced VSMC contraction. Furthermore, the AngII-dependent constriction of mesenteric arteries isolated from PLC-ß3∆SMC, NOX1-/-, NOX4-/- and normal control mice was similar. AngII-induced VSMC contraction and mesenteric artery constriction were blocked by inhibiting the L-type calcium channel Rho-associated kinase 2 (ROCK2) or myosin light chain kinase (MLCK). The activation of ROCK2 and MLCK was significantly induced in PLC-ß3∆SMC mice, whereas the depletion of Ca2+ in the extracellular medium suppressed the AngII-induced activation of ROCK2, MLCK, and vasoconstriction. AngII-induced hypertension was significantly induced in NOX1-/- and PLC-ß3∆SMC mice, whereas LCCA ligation-induced neointima formation was significantly suppressed in NOX1-/- and PLC-ß3∆SMC mice. These results suggest that PLC-ß3 is essential for vascular hyperplasia through NOX1-mediated ROS production but is nonessential for vascular constriction or blood pressure regulation.

10.
ACS Appl Mater Interfaces ; 16(26): 34100-34112, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902890

ABSTRACT

Corrosion-resistant coatings with self-healing capabilities are still a great challenge for metal protection. In this study, a corrosion-resistant coating with intrinsic self-healing capabilities was developed by compounding hydroxy-terminated silicone oil (HTSO) with 2-ureido-4[1H]-pyrimidone (UPy) derivatives. The smooth surface of the coating was shown by scanning electron microscopy (SEM), and good smoothness was also exhibited in the cross-section, which indicated that the coating is very homogeneous from the top to the bottom. Thermogravimetric analysis (TG) was employed to illustrate the temperature-resistant characteristics of the coating, revealing its significant chemical stability up to 360 °C. The corrosion resistance of the coating is assessed through electrochemical impedance spectroscopy (EIS), the typical impedance at 0.01 Hz is 1.70 × 109 and 2.44 × 108 Ω·cm2 before and after exposure to a 3.5 wt % NaCl solution for 70 days. There was no significant change in the water contact angle of the coatings before and after immersion; however, the adhesion strength was reduced. Notably, the coating demonstrates immediate and multiple self-healing properties. The tensile stress of the associated healing sample experiences an augmentation within the temperature range of 30-120 °C, with the critical fracture strain of the healed sample reaching 235% at 120 °C. The self-healing mechanism of the coating is systematically investigated using in situ Raman spectroscopy.

11.
Org Lett ; 26(25): 5306-5311, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38869452

ABSTRACT

Dehydration of alcohols is one of the most fundamental transformations in the organic chemistry class and one of the most widely used methods for producing alkenes in synthetic research. Numerous methods and reagents have been developed to control the regio- and stereoselectivity as well as the dehydration efficiency of normal alcohols. Despite these achievements, regio- and stereoselective and predictable dehydration of allylic alcohol has seldom been reported, except for limited substrates with a native preferred elimination position, as a result of the challenges that many potential dienes could be formed via 1,2- or 1,4-syn- or anti-elimination. Here, we report a tBuOK/potassium 2,2-difluoroacetate-mediated 1,4-syn-dehydration of allylic alcohol for the synthesis of regio- and stereodefined conjugated dienes via an in situ generated directing group strategy. This reaction exhibits a broad substrate scope and good functional group compatibility for primary-tertiary alcohols. The simple and scalable (up to 0.6 mol) procedure with readily available and inexpensive reagents makes it a practical method for conjugated diene synthesis. Mechanistic studies reveal that an acetate with tert-butoxide and allyloxide acetal moiety is formed as an intermediate, in which the acetate and the acetal act as the directing group for the base-promoted elimination. An unusual H2 evolution is also involved in the reaction.

12.
AJNR Am J Neuroradiol ; 45(7): 899-905, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38871372

ABSTRACT

BACKGROUND AND PURPOSE: The Neuroform Atlas stent and the LVIS Jr stent are intracranial microstent systems for the treatment of wide-neck intracranial aneurysms. Hence, this study aimed to compare the efficacy and safety of the Neuroform Atlas stent and the LVIS Jr stent for the treatment of unruptured intracranial aneurysms in parent arteries of <2 mm in diameter. MATERIALS AND METHODS: From March 2022 to April 2023, the clinical and imaging data of 135 patients with unruptured intracranial aneurysms treated with stent-assisted coiling using the Neuroform Atlas or LVIS Jr stent in parent arteries of <2 mm in diameter were retrospectively analyzed. Stent apposition was evaluated by high-resolution conebeam CT (HR-CBCT). Immediate aneurysm-embolization attenuation and occlusion at 6-month follow-up were evaluated using 2D DSA and the modified Raymond-Roy classification. Adverse events were recorded. Multivariate logistic regression analysis was undertaken to determine the independent factors affecting incomplete stent apposition. RESULTS: One hundred thirty-five patients (135 aneurysms) underwent stent-assisted coiling (66 Neuroform Atlas stents and 69 LVIS Jr stents). Intraoperative HR-CBCT showed that 1 Neuroform Atlas stent and 11 LVIS Jr stents had incomplete stent apposition at the aneurysm neck (P < .05). Perioperative complications occurred in 3 cases (2.22%). These comprised 2 cases of neurologic complications (1 case of distal intracranial vascular embolism and 1 case of cerebral parenchymal hemorrhage) and 1 case of severe postprocedural gastrointestinal hemorrhage. DSA follow-up showed 3 cases of aneurysm recurrence in the LVIS Jr group. Multivariate regression analysis showed that a stent angle of ≥75° (OR, 23.963; P = .005) or a parent artery diameter mismatch ratio of ≥1.25 (OR, 8.043; P = .037) were risk factors for incomplete stent apposition, especially for the LVIS Jr stent (OR, 20.297; P = .015). CONCLUSIONS: The Neuroform Atlas stent and LVIS Jr stent are efficacious in the treatment of unruptured intracranial aneurysms in parent arteries of <2 mm in diameter. Apposition of the LVIS Jr stent was worse than in the Neuroform Atlas stent at the neck of some aneurysms.


Subject(s)
Embolization, Therapeutic , Intracranial Aneurysm , Stents , Humans , Intracranial Aneurysm/diagnostic imaging , Intracranial Aneurysm/therapy , Intracranial Aneurysm/surgery , Male , Female , Middle Aged , Retrospective Studies , Aged , Embolization, Therapeutic/instrumentation , Embolization, Therapeutic/methods , Adult , Treatment Outcome , Endovascular Procedures/instrumentation , Endovascular Procedures/methods , Cerebral Angiography , Cone-Beam Computed Tomography , Angiography, Digital Subtraction
13.
Fa Yi Xue Za Zhi ; 40(2): 154-163, 2024 Apr 25.
Article in English, Chinese | MEDLINE | ID: mdl-38847030

ABSTRACT

OBJECTIVES: To develop a deep learning model for automated age estimation based on 3D CT reconstructed images of Han population in western China, and evaluate its feasibility and reliability. METHODS: The retrospective pelvic CT imaging data of 1 200 samples (600 males and 600 females) aged 20.0 to 80.0 years in western China were collected and reconstructed into 3D virtual bone models. The images of the ischial tuberosity feature region were extracted to create sex-specific and left/right site-specific sample libraries. Using the ResNet34 model, 500 samples of different sexes were randomly selected as training and verification set, the remaining samples were used as testing set. Initialization and transfer learning were used to train images that distinguish sex and left/right site. Mean absolute error (MAE) and root mean square error (RMSE) were used as primary indicators to evaluate the model. RESULTS: Prediction results varied between sexes, with bilateral models outperformed left/right unilateral ones, and transfer learning models showed superior performance over initial models. In the prediction results of bilateral transfer learning models, the male MAE was 7.74 years and RMSE was 9.73 years, the female MAE was 6.27 years and RMSE was 7.82 years, and the mixed sexes MAE was 6.64 years and RMSE was 8.43 years. CONCLUSIONS: The skeletal age estimation model, utilizing ischial tuberosity images of Han population in western China and employing the ResNet34 combined with transfer learning, can effectively estimate adult ischium age.


Subject(s)
Age Determination by Skeleton , Deep Learning , Imaging, Three-Dimensional , Ischium , Tomography, X-Ray Computed , Humans , Male , Female , Ischium/diagnostic imaging , Adult , Middle Aged , Tomography, X-Ray Computed/methods , Imaging, Three-Dimensional/methods , China , Retrospective Studies , Age Determination by Skeleton/methods , Aged , Young Adult , Aged, 80 and over , Reproducibility of Results
14.
J Hazard Mater ; 476: 134956, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38917630

ABSTRACT

Covalent organic frameworks (COFs) are a type of novel organic catalysts which show great potential in the treatment of environmental contaminations. Herein, we synthesized three isoreticular halogen-functionalized (F, Cl and Br) porphyrin COFs for visible-light (420 nm ≤ λ ≤ 780 nm) photocatalytic reduction of Cr(VI) to Cr(III). Halogen substituents with tunable electronegativity can regulate the band structure and modulate the charge carrier kinetics of COFs. In the absence of any sacrificial reagent, the isoreticular COFs exhibited good photocatalytic reduction activity of Cr(VI). Particularly, the TAPP-2F showed nearly 100 % conversion efficiency and the highest reaction rate constants (k) on account of the strong electronegativity of F substituent. Experimental results and theoretical calculations showed that the conduction band (CB) potentials of COFs became more negative and charge carrier separation increased with the enhancement of electronegativity (Br < Cl < F), which could provide sufficient driving force for the photoreduction of Cr(VI) to Cr(III). The halogen substituents strategy for regulating the electronic structure of COFs can provide opportunities for designing efficient photocatalysts for environmental remediation. Meanwhile, the mechanistic insights reported in this study help to understand the photocatalytic degradation pathways of heavy metals.

15.
Interv Neuroradiol ; : 15910199241261763, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38881346

ABSTRACT

BACKGROUND: In intracranial stenting, good stent apposition is crucial, and high-resolution C-arm computer tomography (CT) is utilized to assess whether stent apposition is complete. This study was aimed at finding optimal hypertonic or isotonic contrast media injection concentration for high-resolution C-arm CT to assess apposition of flow diversion (FD) after carotid artery stenting in swine. METHODS: Twelve FD stents were implanted into the left carotid artery of Bama swine through the endovascular method. During high-resolution C-arm CT scanning, 6%, 8%, 10%, 12%, and 14% dilution percentages of hypertonic contrast media (iopromide 370 mg/ml) and 10%, 12%, 14%, 16%, and 18% dilution percentages of isotonic contrast media (iodixanol 320 mg/ml) were separately injected. A radiologist and a neuro-interventional specialist evaluated and qualitatively scored the post-processed images, and intravascular ultrasound (IVUS) was used to verify the accuracy of these images. RESULTS: Overall, 12 FD stents were implanted into the left common carotid artery of 12 swine, with a technical success rate of 100%. The best reconstructed images used to observe stent apposition were achieved with iopromide diluted to a concentration of 12% (all P < .05) or iodixanol diluted to a concentration of 16% (all P < .05). Malapposition was noted in one case, and good apposition was noted in 11 cases. These results were consistent with IVUS observations. CONCLUSION: Injecting iopromide or iodixanol diluted to 12% or 16% during high-resolution C-arm CT scanning, respectively, can help evaluate FD stent apposition and obtain optimal image quality.

16.
J Org Chem ; 89(12): 8562-8577, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38847049

ABSTRACT

The mechanisms and regio-, chemo-, and stereoselectivity were theoretically investigated in the Rh(III)-catalyzed [5 + 1] annulation of 2-alkenylanilides and 2-alkylphenols with allenyl acetates. Two different reactants, 2-alkenylanilides and 2-alkylphenols, were selected as model systems in the density functional theory calculations. The obtained theoretical results show that both these reactants exhibit similar steps, namely, (1) N-H/O-H deprotonation and C-H activation, (2) allenyl acetate migratory insertion, (3) ß-oxygen elimination, (4) intramolecular nucleophilic addition of the nitrogen/oxygen-rhodium bond resulting in [5 + 1]-annulation, and (5) protonation with the formation of the desired product and regeneration of the Rh(III) catalyst. The theoretical evidence suggests that the selectivity is determined at the step of allenyl acetate's migratory insertion. Moreover, the regioselectivity is driven by electronic effects, while the interaction energies (C-H···π and C-H···O interactions) play a more imperative role in controlling the stereoselectivity. The obtained theoretical results not only well rationalize the experimental observations but also provide important mechanistic insights for related types of [5 + 1]-annulation reactions.

17.
Biomimetics (Basel) ; 9(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921248

ABSTRACT

Public transportation scheduling aims to optimize the allocation of resources, enhance efficiency, and increase passenger satisfaction, all of which are crucial for building a sustainable urban transportation system. As a complement to public transportation, bike-sharing systems provide users with a solution for the last mile of travel, compensating for the lack of flexibility in public transportation and helping to improve its utilization rate. Due to the characteristics of shared bikes, including peak usage periods in the morning and evening and significant demand fluctuations across different areas, optimizing shared bike dispatch can better meet user needs, reduce vehicle vacancy rates, and increase operating revenue. To address this issue, this article proposes a comprehensive decision-making approach for spatiotemporal demand prediction and bike dispatch optimization. For demand prediction, we design a T-GCN (Temporal Graph Convolutional Network)-based bike demand prediction model. In terms of dispatch optimization, we consider factors such as dispatch capacity, distance restrictions, and dispatch costs, and design an optimization solution based on genetic algorithms. Finally, we validate the approach using shared bike operating data and show that the T-GCN can effectively predict the short-term demand for shared bikes. Meanwhile, the optimization model based on genetic algorithms provides a complete dispatch solution, verifying the model's effectiveness. The shared bike dispatch approach proposed in this paper combines demand prediction with resource scheduling. This scheme can also be extended to other transportation scheduling problems with uncertain demand, such as store replenishment delivery and intercity inventory dispatch.

18.
J Genet Genomics ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38750952

ABSTRACT

G-protein-coupled receptors (GPCRs) are the largest family of transmembrane receptors and regulate various physiological and pathological processes. Despite extensive studies, the roles of GPCRs in mouse embryonic stem cells (mESCs) remain poorly understood. Here, we show that GPR160, a class A member of GPCRs, is dramatically downregulated concurrent with mESC differentiation into embryoid bodies in vitro. Knockdown of Gpr160 leads to downregulation of the expression of pluripotency-associated transcription factors and upregulation of the expression of lineage markers, accompanying with the arrest of the mESC cell-cycle in the G0/G1 phase. RNA-seq analysis shows that GPR160 participates in the JAK/STAT signaling pathway crucial for maintaining ESC stemness, and the knockdown of GPRGpr160 results in the downregulation of STAT3 phosphorylation level, which in turn is partially rescued by colivelin, a STAT3 activator. Consistent with these observations, GPR160 physically interacts with JAK1, and cooperates with leukemia inhibitory factor receptor (LIFR) and gp130 to activate the STAT3 pathway. In summary, our results suggest that GPR160 regulates mESC self-renewal and pluripotency by interacting with the JAK1-LIFR-gp130 complex to mediate the JAK1/STAT3 signaling pathway.

19.
Interv Neuroradiol ; : 15910199241254864, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38751187

ABSTRACT

PURPOSE: This study aims to compare the efficacy and safety of using overlapping low-profile visualized intraluminal support (LVIS) devices and flow diversion (FD) for the treatment of unruptured vertebral artery dissection (VAD) in the V3-V4 segments. METHODS: The clinical and imaging data of 71 patients with unruptured VAD in the V3-V4 segments who underwent either dual LVIS stenting (d-LVIS group) or single FD stenting (FD group) at our center from September 2014 to December 2021 were retrospectively analyzed. RESULTS: Immediate postoperative angiography revealed no significant difference in the degree of occlusion between the two groups in treating vertebral artery dissecting aneurysms (with or without noncompact coiling). However, the d-LVIS group had significantly higher fluoroscopy exposure time and total radiation exposure dose compared to the FD group. During the perioperative period, two cases of pontine infarction and one case of acute thrombosis were encountered. One patient died from subarachnoid hemorrhage during the follow-up period. For dissecting the aneurysm, angiographic follow-up (8.56 ± 1.96 months) showed similar healing outcomes between the two groups (with or without noncompact coiling). However, seven patients (7/40, 17.5%) showed poor healing and one patient showed mild in-stent stenosis. For simple dissection, angiographic follow-up (8.78 ± 1.83 months) showed patent lumens in both groups, with all dissections healing well, and two patients having mild in-stent stenosis. CONCLUSION: Both methods could effectively treat unruptured VAD in V3-V4 segments. Nevertheless, simple FD implantation is relatively easier to perform and involves lower radiation exposure.

20.
Eur J Immunol ; 54(5): e2250133, 2024 May.
Article in English | MEDLINE | ID: mdl-38571392

ABSTRACT

Live-attenuated yellow fever vaccine (YF17D) was developed in the 1930s as the first ever empirically derived human vaccine. Ninety years later, it is still a benchmark for vaccines made today. YF17D triggers a particularly broad and polyfunctional response engaging multiple arms of innate, humoral and cellular immunity. This unique immunogenicity translates into an extraordinary vaccine efficacy and outstanding longevity of protection, possibly by single-dose immunization. More recently, progress in molecular virology and synthetic biology allowed engineering of YF17D as a powerful vector and promising platform for the development of novel recombinant live vaccines, including two licensed vaccines against Japanese encephalitis and dengue, even in paediatric use. Likewise, numerous chimeric and transgenic preclinical candidates have been described. These include prophylactic vaccines against emerging viral infections (e.g. Lassa, Zika and SARS-CoV-2) and parasitic diseases (e.g. malaria), as well as therapeutic applications targeting persistent infections (e.g. HIV and chronic hepatitis), and cancer. Efforts to overcome historical safety concerns and manufacturing challenges are ongoing and pave the way for wider use of YF17D-based vaccines. In this review, we summarize recent insights regarding YF17D as vaccine platform, and how YF17D-based vaccines may complement as well as differentiate from other emerging modalities in response to unmet medical needs and for pandemic preparedness.


Subject(s)
Vaccines, Attenuated , Yellow Fever Vaccine , Yellow fever virus , Humans , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology , Vaccines, Attenuated/immunology , Animals , Yellow Fever/prevention & control , Yellow Fever/immunology , Vaccination/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...