Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 172: 108209, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38460313

ABSTRACT

Halogenation is an indispensable method in the structural modification of lead compounds. It is known to increase lipophilicity and is hence used to improve membrane permeability and thus bioavailability. In this study, we compare the water solubility (logS) of organohalogen compounds and their non-halogenated parent compounds using the molecular matched pair (MMP) analysis method. Unexpectedly, 19.9% of the compounds increased their water solubility upon halogenation. Iodination was observed to have the greatest effect on solubility, followed by chlorination, bromination, and fluorination. Introducing amino, hydroxyl and carboxyl groups into organohalogens improves their aqueous solubilities, whereas introducing a trifluoromethyl group has the opposite effect. According to our quantum chemical calculations, the increased water solubility upon halogenation is, at least partially, attributed to an increased polarity and polarizability. These results improve our understanding of the influence of halogenation on bioactivity.


Subject(s)
Halogenation , Hydrocarbons, Fluorinated , Solubility , Water
2.
J Chem Inf Model ; 64(3): 724-736, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38206320

ABSTRACT

Continuous exploration of the chemical space of molecules to find ligands with high affinity and specificity for specific targets is an important topic in drug discovery. A focus on cyclic compounds, particularly natural compounds with diverse scaffolds, provides important insights into novel molecular structures for drug design. However, the complexity of their ring structures has hindered the applicability of widely accepted methods and software for the systematic identification and classification of cyclic compounds. Herein, we successfully developed a new method, D3Rings, to identify acyclic, monocyclic, spiro ring, fused and bridged ring, and cage ring compounds, as well as macrocyclic compounds. By using D3Rings, we completed the statistics of cyclic compounds in three different databases, e.g., ChEMBL, DrugBank, and COCONUT. The results demonstrated the richness of ring structures in natural products, especially spiro, macrocycles, and fused and bridged rings. Based on this, three deep generative models, namely, VAE, AAE, and CharRNN, were trained and used to construct two data sets similar to DrugBank and COCONUT but 10 times larger than them. The enlarged data sets were then used to explore the molecular chemical space, focusing on complex ring structures, for novel drug discovery and development. Docking experiments with the newly generated COCONUT-like data set against three SARS-CoV-2 target proteins revealed that an expanded compound database improves molecular docking results. Cyclic structures exhibited the best docking scores among the top-ranked docking molecules. These results suggest the importance of exploring the chemical space of structurally novel cyclic compounds and continuous expansion of the library of drug-like compounds to facilitate the discovery of potent ligands with high binding affinity to specific targets. D3Rings is now freely available at http://www.d3pharma.com/D3Rings/.


Subject(s)
Proteins , Software , Molecular Docking Simulation , Proteins/chemistry , Drug Design , Drug Discovery , Organic Chemicals
3.
Comput Biol Med ; 164: 107283, 2023 09.
Article in English | MEDLINE | ID: mdl-37536095

ABSTRACT

Resource- and time-consuming biological experiments are unavoidable in traditional drug discovery, which have directly driven the evolution of various computational algorithms and tools for drug-target interaction (DTI) prediction. For improving the prediction reliability, a comprehensive platform is highly expected as some previously reported webservers are small in scale, single-method, or even out of service. In this study, we integrated the multiple-conformation based docking, 2D/3D ligand similarity search and deep learning approaches to construct a comprehensive webserver, namely D3CARP, for target prediction and virtual screening. Specifically, 9352 conformations with positive control of 1970 targets were used for molecular docking, and approximately 2 million target-ligand pairs were used for 2D/3D ligand similarity search and deep learning. Besides, the positive compounds were added as references, and related diseases of therapeutic targets were annotated for further disease-based DTI study. The accuracies of the molecular docking and deep learning approaches were 0.44 and 0.89, respectively. And the average accuracy of five ligand similarity searches was 0.94. The strengths of D3CARP encompass the support for multiple computational methods, ensemble docking, utilization of positive controls as references, cross-validation of predicted outcomes, diverse disease types, and broad applicability in drug discovery. The D3CARP is freely accessible at https://www.d3pharma.com/D3CARP/index.php.


Subject(s)
Deep Learning , Molecular Docking Simulation , Ligands , Reproducibility of Results , Algorithms , Protein Binding
4.
Comput Biol Med ; 151(Pt A): 106212, 2022 12.
Article in English | MEDLINE | ID: mdl-36327885

ABSTRACT

The number of SARS-CoV-2 spike Receptor Binding Domain (RBD) with multiple amino acid mutations is huge due to random mutations and combinatorial explosions, making it almost impossible to experimentally determine their binding affinities to human angiotensin-converting enzyme 2 (hACE2). Although computational prediction is an alternative way, there is still no online platform to predict the mutation effect of RBD on the hACE2 binding affinity until now. In this study, we developed a free online platform based on deep learning models, namely D3AI-Spike, for quickly predicting binding affinity between spike RBD mutants and hACE2. The models based on CNN and CNN-RNN methods have the concordance index of around 0.8. Overall, the test results of the models are in agreement with the experimental data. To further evaluate the prediction power of D3AI-Spike, we predicted and experimentally determined the binding affinity of a VUM (variants under monitoring) variant IHU (B.1.640.2), which has fourteen amino acid substitutions, including N501Y and E484K, and 9 deletions located in the spike protein. The predicted average affinity score for wild-type RBD and IHU to hACE2 are 0.483 and 0.438, while the determined Kaff values are 5.39 ± 0.38 × 107 L/mol and 1.02 ± 0.47 × 107 L/mol, respectively, demonstrating the strong predictive power of D3AI-Spike. We think D3AI-Spike will be helpful to the viral transmission prediction for the new emerging SARS-CoV-2 variants. D3AI-Spike is now available free of charge at https://www.d3pharma.com/D3Targets-2019-nCoV/D3AI-Spike/index.php.


Subject(s)
COVID-19 , Deep Learning , Humans , Angiotensin-Converting Enzyme 2/genetics , SARS-CoV-2/genetics , Amino Acids , COVID-19/genetics , Mutation/genetics , Protein Binding , Spike Glycoprotein, Coronavirus/genetics
5.
Brief Bioinform ; 23(3)2022 05 13.
Article in English | MEDLINE | ID: mdl-35443040

ABSTRACT

Target prediction and virtual screening are two powerful tools of computer-aided drug design. Target identification is of great significance for hit discovery, lead optimization, drug repurposing and elucidation of the mechanism. Virtual screening can improve the hit rate of drug screening to shorten the cycle of drug discovery and development. Therefore, target prediction and virtual screening are of great importance for developing highly effective drugs against COVID-19. Here we present D3AI-CoV, a platform for target prediction and virtual screening for the discovery of anti-COVID-19 drugs. The platform is composed of three newly developed deep learning-based models i.e., MultiDTI, MPNNs-CNN and MPNNs-CNN-R models. To compare the predictive performance of D3AI-CoV with other methods, an external test set, named Test-78, was prepared, which consists of 39 newly published independent active compounds and 39 inactive compounds from DrugBank. For target prediction, the areas under the receiver operating characteristic curves (AUCs) of MultiDTI and MPNNs-CNN models are 0.93 and 0.91, respectively, whereas the AUCs of the other reported approaches range from 0.51 to 0.74. For virtual screening, the hit rate of D3AI-CoV is also better than other methods. D3AI-CoV is available for free as a web application at http://www.d3pharma.com/D3Targets-2019-nCoV/D3AI-CoV/index.php, which can serve as a rapid online tool for predicting potential targets for active compounds and for identifying active molecules against a specific target protein for COVID-19 treatment.


Subject(s)
COVID-19 Drug Treatment , Deep Learning , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Drug Repositioning , Humans , Molecular Docking Simulation , SARS-CoV-2
6.
Comput Biol Med ; 145: 105455, 2022 06.
Article in English | MEDLINE | ID: mdl-35364304

ABSTRACT

There are 7 known human pathogenic coronaviruses, which are HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, MERS-CoV, SARS-CoV and SARS-CoV-2. While SARS-CoV-2 is currently caused a severe epidemic, experts believe that new pathogenic coronavirus would emerge in the future. Therefore, developing broad-spectrum anti-coronavirus drugs is of great significance. In this study, we performed protein sequence and three-dimensional structure analyses for all the 20 virus-encoded proteins across all the 7 coronaviruses, with the purpose to identify highly conserved proteins and binding sites for developing pan-coronavirus drugs. We found that nsp5, nsp10, nsp12, nsp13, nsp14, and nsp16 are highly conserved both in protein sequences (with average identity percentage higher than 52%, average amino acid conservation scores higher than 5.2) and binding pockets (with average amino acid conservation scores higher than 5.8). We also performed the similarity comparison between these 6 proteins and all the human proteins, and found that all the 6 proteins have similarity less than 25%, indicating that the drugs targeting the 6 proteins should have little interference of human protein function. Accordingly, we suggest that nsp5, nsp10, nsp12, nsp13, nsp14, and nsp16 are potential targets for pan-coronavirus drug development.


Subject(s)
COVID-19 Drug Treatment , Coronavirus OC43, Human , Severe acute respiratory syndrome-related coronavirus , Amino Acids , Humans , SARS-CoV-2 , Viral Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...