Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 21(4): 4835-4852, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38872516

ABSTRACT

Since the global outbreak of COVID-19, the virus has continuously mutated and can survive in the air for long periods of time. This paper establishes and analyzes a model of COVID-19 with self-protection and quarantine measures affected by viruses in the environment to investigate the influence of viruses in the environment on the spread of the outbreak, as well as to develop a rational prevention and control measure to control the spread of the outbreak. The basic reproduction number was calculated and Lyapunov functions were constructed to discuss the stability of the model equilibrium points. The disease-free equilibrium point was proven to be globally asymptotically stable when $ R_0 < 1 $, and the endemic equilibrium point was globally asymptotically stable when $ R_0 > 1 $. The model was fitted using data from COVID-19 cases in Chongqing between November 1 to November 25, 2022. Based on the numerical analysis, the following conclusion was obtained: clearing the virus in the environment and strengthening the isolation measures for infected people can control the epidemic to a certain extent, but enhancing the self-protection of individuals can be more effective in reducing the risk of being infected and controlling the transmission of the epidemic, which is more conducive to the practical application.


Subject(s)
Basic Reproduction Number , COVID-19 , Quarantine , SARS-CoV-2 , COVID-19/prevention & control , COVID-19/transmission , COVID-19/epidemiology , Humans , Basic Reproduction Number/statistics & numerical data , Pandemics/prevention & control , China/epidemiology , Computer Simulation , Disease Outbreaks/prevention & control , Algorithms
2.
Nat Commun ; 14(1): 6263, 2023 Oct 07.
Article in English | MEDLINE | ID: mdl-37805528

ABSTRACT

Hydrogen peroxide (H2O2) electrosynthesis through oxygen reduction reaction (ORR) is drawing worldwide attention, whereas suffering seriously from the sluggish oxygen evolution reaction (OER) and the difficult extraction of thermodynamically unstable H2O2. Herein, we present an electrosynthesis protocol involving coupling ORR-to-H2O2 with waste polyethylene terephthalate (PET) upcycling and the first H2O2 conversion strategy. Ni-Mn bimetal- and onion carbon-based catalysts are designed to catalyze ORR-to-H2O2 and ethylene glycol electrooxidation with the Faradaic efficiency of 97.5% (H2O2) and 93.0% (formate). This electrolysis system runs successfully at only 0.927 V to achieve an industrial-scale current density of 400 mA cm-2, surpassing all reported H2O2 electrosynthesis systems. H2O2 product is upgraded through two downstream routes of converting H2O2 into sodium perborate and dibenzoyl peroxide. Techno-economic evolution highlights the high gross profit of the ORR || PET upcycling protocol over HER || PET upcycling and ORR || OER. This work provides an energy-saving methodology for the electrosynthesis of H2O2 and other chemicals.

3.
Math Biosci Eng ; 18(2): 1833-1844, 2021 02 22.
Article in English | MEDLINE | ID: mdl-33757213

ABSTRACT

In this paper, we present an SEIIaHR epidemic model to study the influence of recessive infection and isolation in the spread of COVID-19. We first prove that the infection-free equilibrium is globally asymptotically stable with condition R0<1 and the positive equilibrium is uniformly persistent when the condition R0>1. By using the COVID-19 data in India, we then give numerical simulations to illustrate our results and carry out some sensitivity analysis. We know that asymptomatic infections will affect the spread of the disease when the quarantine rate is within the range of [0.3519, 0.5411]. Furthermore, isolating people with symptoms is important to control and eliminate the disease.


Subject(s)
COVID-19/epidemiology , Epidemics , Models, Biological , SARS-CoV-2 , Asymptomatic Infections/epidemiology , Basic Reproduction Number/statistics & numerical data , COVID-19/prevention & control , COVID-19/transmission , Computer Simulation , Epidemics/prevention & control , Epidemics/statistics & numerical data , Humans , India/epidemiology , Markov Chains , Mathematical Concepts , Monte Carlo Method , Pandemics/prevention & control , Pandemics/statistics & numerical data , Quarantine/statistics & numerical data
4.
Math Biosci Eng ; 10(4): 1159-71, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23906206

ABSTRACT

Hand, foot and mouth disease (HFMD) is one of the major public-health problems in China. Based on the HFMD data of the Department of Health of Shandong Province, we propose a dynamic model with periodic transmission rates to investigate the seasonal HFMD. After evaluating the basic reproduction number, we analyze the dynamical behaviors of the model and simulate the HFMD data of Shandong Province. By carrying out the sensitivity analysis of some key parameters, we conclude that the recessive subpopulation plays an important role in the spread of HFMD, and only quarantining the infected is not an effective measure in controlling the disease.


Subject(s)
Carrier State/virology , Enterovirus/isolation & purification , Hand, Foot and Mouth Disease/epidemiology , Adult , Basic Reproduction Number , Carrier State/immunology , Child, Preschool , China/epidemiology , Computer Simulation , Enterovirus/immunology , Hand, Foot and Mouth Disease/immunology , Hand, Foot and Mouth Disease/transmission , Hand, Foot and Mouth Disease/virology , Humans , Infant , Models, Statistical , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...