Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
bioRxiv ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39071308

ABSTRACT

Biomolecular condensates arising from liquid-liquid phase separation contribute to diverse cellular processes, such as gene expression. Partitioning of client molecules into condensates is critical to regulating the composition and function of condensates. Previous studies suggest that client size limits partitioning, with dextrans >5 nm excluded from condensates. Here, we asked whether larger particles, such as macromolecular complexes, can partition into condensates based on particle-condensate interactions. We sought to discover the biophysical principles that govern particle inclusion in or exclusion from condensates using polymer nanoparticles with tailored surface chemistries as models of macromolecular complexes. Particles coated with polyethylene glycol (PEG) did not partition into condensates. We next leveraged the PEGylated particles as an inert platform to which we conjugated specific adhesive moieties. Particles functionalized with biotin partitioned into condensates containing streptavidin, driven by high-affinity biotin-streptavidin binding. Oligonucleotide-decorated particles exhibited varying degrees of partitioning into condensates, depending on condensate composition. Partitioning of oligonucleotide-coated particles was tuned by altering salt concentration, oligonucleotide length, and oligonucleotide surface density. Remarkably, beads with distinct surface chemistries partitioned orthogonally into immiscible condensates. Based on our experiments, we conclude that arbitrarily large particles can controllably partition into biomolecular condensates given sufficiently strong condensate-particle interactions, a conclusion also supported by our coarse-grained molecular dynamics simulations and theory. These findings may provide insights into how various cellular processes are achieved based on partitioning of large clients into biomolecular condensates, as well as offer design principles for the development of drug delivery systems that selectively target disease-related biomolecular condensates.

2.
Front Nutr ; 11: 1388591, 2024.
Article in English | MEDLINE | ID: mdl-38860161

ABSTRACT

Background: High sodium intake and fluid overhydration are common factors of and strongly associated with adverse outcomes in chronic kidney disease (CKD) patients. Yet, their effects on cardiac dysfunction remain unclear. Aims: The study aimed to explore the impact of salt and volume overload on cardiac alterations in non-dialysis CKD. Methods: In all, 409 patients with CKD stages 1-4 (G1-G4) were enrolled. Daily salt intake (DSI) was estimated by 24-h urinary sodium excretion. Volume status was evaluated by the ratio of extracellular water (ECW) to total body water (TBW) measured by body composition monitor. Recruited patients were categorized into four groups according to DSI (6 g/day) and median ECW/TBW (0.439). Echocardiographic and body composition parameters and clinical indicators were compared. Associations between echocardiographic findings and basic characteristics were performed by Spearman's correlations. Univariate and multivariate binary logistic regression analysis were used to determine the associations between DSI and ECW/TBW in the study groups and the incidence of left ventricular hypertrophy (LVH) and elevated left ventricular filling pressure (ELVFP). In addition, the subgroup effects of DSI and ECW/TBW on cardiac abnormalities were estimated using Cox regression. Results: Of the enrolled patients with CKD, the median urinary protein was 0.94 (0.28-3.14) g/d and estimated glomerular filtration rate (eGFR) was 92.05 (IQR: 64.52-110.99) mL/min/1.73 m2. The distributions of CKD stages G1-G4 in the four groups was significantly different (p = 0.020). Furthermore, compared to group 1 (low DSI and low ECW/TBW), group 4 (high DSI and high ECW/TBW) showed a 2.396-fold (95%CI: 1.171-4.902; p = 0.017) excess risk of LVH and/or ELVFP incidence after adjusting for important CKD and cardiovascular disease risk factors. Moreover, combined with eGFR, DSI and ECW/TBW could identify patients with higher cardiac dysfunction risk estimates with an AUC of 0.704 (sensitivity: 75.2%, specificity: 61.0%). The specificity increased to 85.7% in those with nephrotic proteinuria (AUC = 0.713). The magnitude of these associations was consistent across subgroups analyses. Conclusion: The combination of high DSI (>6 g/d) and high ECW/TBW (>0.439) independently predicted a greater risk of LVH or ELVFP incidence in non-dialysis CKD patients. Moreover, the inclusion of eGFR and proteinuria improved the risk stratification ability of DSI and ECW/TBW in cardiac impairments in CKD.

3.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38922612

ABSTRACT

The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.

4.
J Phys Chem Lett ; 15(26): 6890-6895, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38934585

ABSTRACT

Organic materials that can emit ultralong room-temperature phosphorescence (RTP) have attracted a great deal of interest. Whether the pure boric acid (BA) solid can emit RTP and the origin of the RTP in BA caused a debate recently. Herein, our first-principles calculations and experimental measurements suggest that RTP of BA originates from the B-O-O-B group in a (H2BO3)2 species, which can be formed by polymerization of two dehydrogenated BA molecules under light irradiation. The calculated absorption, fluorescence, and phosphorescence spectra of B-O-O-B match well with the experiments. Experimental X-ray photoelectron and X-ray absorption spectra evidence the existence of B-O-O-B in BA. The O-O bond in B-O-O-B can break upon optical excitation, creating two B-O radicals. Radiative transition from localized dangling orbitals of the B-O radicals to the delocalized orbitals of the crystal bulk leads to the observed RTP. Our calculated phosphorescence lifetime is ∼1 s, which agrees well with the experiment.

5.
Front Genet ; 15: 1396744, 2024.
Article in English | MEDLINE | ID: mdl-38689648

ABSTRACT

Pyrus (pear) is among the most nutritious fruits and contains fibers that have great health benefits to humans. It is mostly cultivated in temperate regions globally and is highly subjected to biotic and abiotic stresses which affect its yield. Pheophorbide a oxygenase (PAO) is an essential component of the chlorophyll degradation system and contributes to the senescence of leaves. It is responsible for opening the pheophorbide a porphyrin macrocycle and forming the main fluorescent chlorophyll catabolite However, this gene family and its members have not been explored in Pyrus genomes. Here we report a pangenome-wide investigation has been conducted on eight Pyrus genomes: Cuiguan, Shanxi Duli, Zhongai 1, Nijisseiki, Yunhong No.1, d'Anjou, Bartlett v2.0, and Dangshansuli v.1.1. The phylogenetic history, their gene structure, conservation patterns of motifs, their distribution on chromosomes, and gene duplication are studied in detail which shows the intraspecific structural conservation as well as evolutionary patterns of Pyrus PAOs. Cis-elements, protein-protein interactions (PPI), and the Gene Ontology (GO) enrichment analyses show their potential biological functions. Furthermore, their expression in various tissues, fruit hardening conditions, and drought stress conditions is also studied. Based on phylogenetics, the identified PAOs were divided into four groups. The expansion of this gene family in Pyrus is caused by both tandem and segmental duplication. Moreover, positive and negative selection pressure equally directed the gene's duplication process. The Pyrus PAO genes were enriched in hormones-related, light, development, and stress-related elements. RNA-seq data analysis showed that PAOs have varied levels of expression under diseased and abiotic stress conditions. The 3D structures of PAOs are also predicted to get more insights into functional conservation. Our research can be used further to get a deeper knowledge of the PAO gene family in Pyrus and to guide future research on improving the genetic composition of Pyrus to enhance stress tolerance.

6.
ACS Appl Mater Interfaces ; 16(10): 12455-12466, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38419285

ABSTRACT

A rational design of water-splitting photocatalysts from the perspective of the electronic structure is highly desirable for optimizing catalytic activities. However, the structure-activity relationship is still unclear, which impedes the development of efficient catalysts. Herein, by comparing systematically the overall water-splitting capability of 20 kinds of metallic elements anchored at three sites (including cavity, carbon vacancy, and nitrogen vacancy) of graphitic carbon nitride (g-C3N4) through density functional theory calculations, we uncover that availability of in-gap empty defect states and the d-band center position are paramount parameters to determine activities of g-C3N4 on photocatalytic water splitting. In-gap empty states play a role in accommodating electrons from H2O to facilitate its splitting. A lower d-band center weakens the interaction between reaction intermediates and g-C3N4, thereby promoting O2 desorption. Metals embedded at carbon vacancies are found to be superior to those at cavities and nitrogen vacancies because the former not only provides ample in-gap empty states but also has a lower d-band center. We also discover a rule that, for a reaction in which the bond order between the metal and intermediate enlarges (reduces), its reaction difficulty increases (decreases) with the increasing atomic number for elements in the same period. After screening, we find that non-noble metals Co, Ni, and Ga anchored at carbon vacancies possess catalytic performances comparable to Pd- and Pt-doped systems, with the rate-determining barriers less than 0.55 eV. Our findings may provide useful information for designing effective photocatalysts.

7.
J Affect Disord ; 349: 559-568, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38211744

ABSTRACT

BACKGROUND: Depression is a major cause of suicide and mortality worldwide. This study aims to conduct a systematic review to identify metabolic biomarkers and pathways for major depressive disorder (MDD), a prevalent subtype of clinical depression. METHODS: We searched for metabolomics studies on depression published between January 2000 and January 2023 in the PubMed and Web of Science databases. The reported metabolic biomarkers were systematically evaluated and compared. Pathway analysis was implemented using MetaboAnalyst 5.0. RESULTS: We included 26 clinical studies on MDD and 78 metabolomics studies on depressive-like animal models. A total of 55 and 77 high-frequency metabolites were reported consistently in two-thirds of clinical and murine studies, respectively. In the comparison between murine and clinical studies, we identified 9 consistently changed metabolites (tryptophan, tyrosine, phenylalanine, methionine, fumarate, valine, deoxycholic acid, pyruvate, kynurenic acid) in the blood, 1 consistently altered metabolite (indoxyl sulfate) in the urine and 14 disturbed metabolic pathways in both types of studies. These metabolic dysregulations and pathways are mainly implicated in enhanced inflammation, impaired neuroprotection, reduced energy metabolism, increased oxidative stress damage and disturbed apoptosis, laying solid molecular foundations for MDD. LIMITATIONS: Due to unavailability of original data like effect-size results in many metabolomics studies, a meta-analysis cannot be conducted, and confounding factors cannot be fully ruled out. CONCLUSIONS: This systematic review delineated metabolic biomarkers and pathways related to depression in the murine and clinical samples, providing opportunities for early diagnosis of MDD and the development of novel diagnostic targets.

8.
J Sci Food Agric ; 104(5): 2907-2916, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38029376

ABSTRACT

BACKGROUND: Rancidity causes unpleasant tastes and smells, and the degradation of fatty acids and natural antioxidants, so that an oil is unfit to be consumed. Natural antioxidants, including tocopherols, polyphenols (sesamol, canolol, ferulic acid, caffeic acid, etc.), ß-carotene, squalene and phytosterols, contribute to delay the oxidation of vegetable oils. However, studies on the combination of natural antioxidants to lengthen the shelf life of unsaturated fatty acid-rich blended oil have not been reported. RESULTS: All of the composite antioxidants had the potential to significantly improve the oxidation stability of blended oil. Blended oil G with 0.05 g kg-1 ß-carotene, 0.25 g kg-1 sesamol and 0.25 g kg-1 caffeic acid showed the best anti-autooxidation. It is also effective in improving the oxidative stability of vegetable oils containing various fatty acids. The oxidation stability index of the blended oil containing the optimum composition of natural antioxidants was 2.17-fold longer than that of the control sample. After the end of accelerated oxidation, the oil's peroxide value, p-anisidine value and total oxidation value were 6.59 times, 12.26 times and 6.65 times lower than those of the control sample, respectively. CONCLUSION: (1) The combination of natural antioxidants ß-carotene (0.05 g kg-1 ), sesamol (0.25 g kg-1 ) and caffeic acid (0.25 g kg-1 ) enhances the oxidative stability of unsaturated fatty acid-rich blended oils. (2) ß-Carotene is the main antioxidant in the early stages of oxidation. (3) Sesamol and caffeic acid are the main antioxidants in the middle and late stages of oxidation. © 2023 Society of Chemical Industry.


Subject(s)
Antioxidants , Benzodioxoles , Phenols , beta Carotene , Antioxidants/chemistry , Oxidation-Reduction , Fatty Acids, Unsaturated , Plant Oils/chemistry , Fatty Acids , Caffeic Acids
9.
Curr Res Food Sci ; 7: 100621, 2023.
Article in English | MEDLINE | ID: mdl-38021256

ABSTRACT

Chlorella pyrenoidosa (C. pyrenoidosa) has been widely used in commercial food and feed production for numerous years. Its high protein content and cost-effectiveness make it an attractive source of novel protein. With a focus on sustainable development and the search for green natural products, current research is dedicated to maximizing the utilization of C. pyrenoidosa protein (CPP) and peptide. Various techniques, such as the use of ionic liquids, freeze-thawing, ultrasonication, enzyme digest, microwaving are employed in the extraction of CPP. The extracted CPP has demonstrated antioxidant, anti-inflammatory, and bacteriostatic properties. It can also stimulate immune regulation, prevent cardiovascular disease, protect red blood cells, and even be used in wastewater treatment. Furthermore, CPP has shown some potential in combating obesity. Additionally, CPP is being explored in three-dimensional (3D) printing applications, particularly for the creation of biological scaffolds. It is also anticipated to play a role in 3D food printing. This review aimed to supply a comprehensive summary of CPP and C. pyrenoidosa peptide extraction methods, their functions, and practical applications in various industries. By doing so, it seeks to underpin subsequent research efforts, highlight current research limitations, and identify future research directions in this field.

10.
Environ Sci Pollut Res Int ; 30(54): 115745-115757, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37889413

ABSTRACT

Understanding the spatial and temporal variations of CO2 column concentration (CO2-CCs) is crucial for tackling climate change and promoting sustainable human development. This study provides an in-depth analysis of CO2 dynamics in the Yellow River Basin, an area significantly affected by both natural and anthropogenic factors. Using data from the Orbiting Carbon Observatory 2 (OCO-2) and the Fourier transformation spectrometer (FTS) of the GOSAT satellite remote sensing sensors, supplemented with ground station data from the Waliguan station, we scrutinized the CO2 levels in the region from 2013 to 2022. The regional CO2-CC displayed a 12-month cyclical variation and a continuous upward trend, escalating by approximately 4.26% over the 10-year period. Spatiotemporal differences were evident in the monthly variation of CO2-CC, with peak and minimum values occurring in May and August respectively. Geographically, the highest CO2-CC was found in the central part of the basin, while the lowest was in the northern part of Inner Mongolia. This study underscores the increased significance of the region's CO2-CC, which showed an increase from 17.0 ppm at the start of the period to 21.0 ppm by the end, representing an overall growth of between 4.35 and 5.25%. The findings highlight the urgency of targeted measures to mitigate CO2 emissions and adapt to their consequences in the Yellow River Basin, contributing to the global efforts against climate change and towards sustainable development.


Subject(s)
Carbon Dioxide , Rivers , Humans , Carbon Dioxide/analysis , Remote Sensing Technology , China , Climate Change
11.
Foods ; 12(11)2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37297517

ABSTRACT

The effects of endogenous anti-oxidative components of ten common edible vegetable oils (palm olein, corn oil, rapeseed oil, soybean oil, perilla seed oil, high oleic sunflower oil, peanut oil, camellia oil, linseed oil, and sesame oil) on oxidation were explored in this research. The oxidation processes and patterns of the oils were investigated with the Schaal oven test using fatty acids and the oxidative stability index, acid value, peroxide value, p-anisidine value, total oxidation value, and content of major endogenous anti-oxidative components as indicators. The major endogenous anti-oxidative components in vegetable oils were tocopherols, sterols, polyphenols, and squalene, among which α-tocopherol, ß-sitosterol, and polyphenols showed good anti-oxidative activity. However, squalene and polyphenols were relatively low and showed limited anti-oxidative effects. Moreover, the oxidative stability index of edible vegetable oils oxidized at high temperature (120 °C) was positively correlated with the content of saturated fatty acids (r = 0.659) and negatively correlated with the content of polyunsaturated fatty acids (r = -0.634) and calculated oxidizability (r = -0.696). When oxidized at a low temperature (62 °C), oxidative stability was influenced by a combination of fatty acid composition as well as endogenous anti-oxidative components. An improved TOPSIS based on Mahalanobis distance was used to evaluate the oxidative stability of different types of vegetable oils. Moreover, the oxidative stability of corn oil was better than the other vegetable oils, while perilla seed oil was very weak.

12.
Opt Lett ; 48(11): 2809-2812, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37262216

ABSTRACT

As the foundation of virtual content generation, cameras are crucial for augmented reality (AR) applications, yet their integration with transparent displays has remained a challenge. Prior efforts to develop see-through cameras have struggled to achieve high resolution and seamless integration with AR displays. In this work, we present LightguideCam, a compact and flexible see-through camera based on an AR lightguide. To address the overlapping artifacts in measurement, we present a compressive sensing algorithm based on an equivalent imaging model that minimizes computational consumption and calibration complexity. We validate our design using a commercial AR lightguide and demonstrate a field of view of 23.1° and an angular resolution of 0.1° in the prototype. Our LightguideCam has great potential as a plug-and-play extensional imaging component in AR head-mounted displays, with promising applications for eye-gaze tracking, eye-position perspective photography, and improved human-computer interaction devices, such as full-screen mobile phones.

13.
J Phys Chem Lett ; 14(23): 5267-5282, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37265325

ABSTRACT

The GW method and the Bethe-Salpeter equation (BSE) have exhibited excellent performance in computing charged and neutral electronic excitations in materials of various dimensions in the past decades. Extensive benchmark studies have demonstrated that their precision can reach the level of high-level ab initio wave function approaches with a much lower computational cost. GW and BSE outperform the density functional theory because of both the more accurate electronic structures in GW and the capability to treat local, charge-transfer, and Rydberg excitations on the same footing in BSE. Presently, they are the only available first-principles approaches that can study electronic excitations at the surface and in the interior of periodic systems and at the interface between periodic systems with reliable accuracy. In this Perspective, a brief overview of GW and BSE and their applications in complex chemical systems is provided, with the goal of boosting their broader utilization in chemistry.

14.
Tree Physiol ; 43(9): 1691-1703, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37216651

ABSTRACT

Accurate determination of sap flow over a wide measurement range is important for assessing tree transpiration. However, this is difficult to achieve by using a single heat pulse method. Recent attempts have been made to combine multiple heat pulse methods and have successfully increased the sap flow measurement range. However, relative performance of different dual methods has not yet been addressed, and selection of the numerical threshold used to switch between methods has not been verified among different dual methods. This paper evaluates three different dual methods with respect to measurement range, precision and sources of uncertainty: (method 1) the heat ratio (HR) and compensation heat pulse method; (method 2) the HR and T-max method; and (method 3) the HR and double ratio method. Field experiments showed that methods 1, 2 with three needles and 3 compare well with the benchmark Sapflow+ method, having root mean square deviations of 4.7 cm h-1, 3.0 cm h-1 and 2.4 cm h-1, respectively. The three dual methods are equivalent in accuracy (P > 0.05). Moreover, all dual methods can satisfactorily measure reverse, low and medium heat pulse velocities. However, for high velocities (>100 cm h-1), the HR + T-max (method 2) performed better than the other methods. Another advantage is that this method has a three- instead of four-needle probe configuration, making it less error prone to probe misalignment and plant wounding. All dual methods in this study use the HR method for calculating low to medium flow and a different method for calculating high flow. The optimal threshold for switching from HR to another method is HR's maximum flow, which can be accurately determined from the Péclet number. This study therefore provides guidance for an optimal selection of methods for quantification of sap flow over a wide measurement range.


Subject(s)
Hot Temperature , Research Design , Trees , Biological Transport , Plant Transpiration
15.
J Phys Chem Lett ; 14(1): 230-236, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36594617

ABSTRACT

Ultralong organic phosphorescence (UOP) in pure organic molecular crystals has attracted a lot of interest recently. There is much debate on the emission mechanism of this UOP. Two recent experimental works published in Nat. Photonics 2019, 13, 406-411 and Nat. Mater. 2021, 20, 175-180 attribute UOP in the 2,4,6-trimethoxy-1,3,5-triazine (TMOT) crystals and the carbazole crystals to H-aggregation of the TMOT molecules or the formation of charge-transfer excitons between the carbazole and impurity molecules. Our first-principles many-body Green's function theory calculations show that the lowest triplet states of these two crystals are in fact the localized defect states originating from the twisted TMOT molecules and the impurities, respectively. Energies of the H-aggregation-induced exciton and the charge-transfer exciton are too high to account for UOP. UOP should be mainly due to the little orbital overlap between the localized defect state and the delocalized band edges of the crystal. Strong intermolecular interactions suppress nonradiative decay of the triplet exciton localized on the defect.

16.
Behav Brain Res ; 439: 114237, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36464027

ABSTRACT

BACKGROUND: Depression is the most common comorbidities associated with rheumatoid arthritis (RA). We aimed to explore the mechanism of association between RA and depression. METHODS: 120 subjects were enrolled and depression was diagnosed and assessed using DSM-5 and 24-item version of Hamilton Depression Scale. Pain intensity and joint function in patients with RA were assessed using the visual analog scale (VAS) and health assessment questionnaire (HAQ). Serum levels of interferon-gamma (IFN-γ), indoleamine 2,3-dioxygenase (IDO), kynurenine (KYN), tryptophan (TRP), and quinolinic acid (QUIN)were detected. In animal experiments, K/BxN mice with RA-like phenotype was used and depressive behavior was observed. The protein expression level of N-methyl -D- aspartate receptor 2B (NR2B) in the hippocampus was detected. RESULTS: In this study, 36.67 % of patients with RA also had depression. The working status, month family income, tender joint count, the VAS and HAQ score were the main factors influencing the depression in RA patients. HAQ score was found to be an independent risk factor for depression in RA. Serum IDO, IFN-γ, KYN were increased and TRP contents were decreased in RA group. K/BxN mice with RA-like phenotype showed depressive behavior. However, injection of IFN-γ neutralizing antibody could inhibit kynurenine pathway and reverse the depressive behavior in mice. The levels of QUIN in the neurotoxic metabolic pathway were increased and N-methyl -D- aspartate receptors (NMDAR) were activated, which may be the mechanism behind the onset of depression. CONCLUSIONS: From clinical and preclinical aspects, the occurrence of depression in RA was explored and the related mechanism was revealed.


Subject(s)
Arthritis, Rheumatoid , Kynurenine , Animals , Mice , Kynurenine/metabolism , Interferon-gamma , Depression/epidemiology , Depression/diagnosis , Prevalence , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Tryptophan/metabolism , Comorbidity , Arthritis, Rheumatoid/complications
18.
Toxicol Lett ; 373: 1-12, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36368619

ABSTRACT

Hepatic fibrosis is caused by excessive accumulation of extracellular matrix (ECM) due to repeated liver injury. Hepatic stellate cells (HSCs) play a key role in the pathogenesis and progression of hepatic fibrosis. A study showed that CYP4A14 gene defect can inhibit hepatic fibrosis, but the specific mechanism was not clear. In this experiment, patients with hepatic fibrosis, LX-2 cells (a human HSCs line), and mice with liver fibrosis induced by carbon tetrachloride (CCl4) were used to study the effect of 20-Hydroxytetraenoic acid (20-HETE), one of the main metabolites of arachidonic acid (AA) catalyzed by CYP4A enzyme, on hepatic fibrosis and its mechanism. Our experimental results showed that the 20-HETE of patients with hepatic fibrosis is significantly higher than that of normal people and is closely related to the degree of fibrosis. 20-HETE could induce activation of LX-2 cells and 20-HETE antagonist could inhibit the induction of 20-HETE. 20-HETE was significantly increased in CCl4-induced liver fibrosis mice and inhibition of 20-HETE production could attenuate hepatic fibrosis. 20-HETE induced hepatic fibrosis mainly via the TGF- ß1/Smad3 signal pathway. In conclusion, the results suggest that 20-HETE plays an important role in hepatic fibrosis and may be a possible target for the clinical treatment of hepatic fibrosis.


Subject(s)
Hepatic Stellate Cells , Transforming Growth Factor beta1 , Humans , Mice , Animals , Transforming Growth Factor beta1/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Carbon Tetrachloride/toxicity , Signal Transduction , Liver , Smad3 Protein/genetics , Smad3 Protein/metabolism
19.
Mol Immunol ; 152: 111-122, 2022 12.
Article in English | MEDLINE | ID: mdl-36327908

ABSTRACT

Liver fibrosis is an excessive accumulation of extracellular matrix (ECM) due to chronic liver injury. In recent years, the mechanism of liver fibrosis has been extensively studied. Hepatic stellate cells (HSCs) play an important role in the occurrence and development of liver fibrosis because activated hepatic stellate cells could synthesize a large number of ECM and thus participate in the process of liver fibrosis. Interleukin-8 (IL-8) (deletion in mice) is a versatile chemokine that promotes inflammation and affects cell growth by activating related pathways and plays an important role in the development and progression of a variety of diseases. Notably, the expression level of IL-8 was significantly higher in patients with liver fibrosis, suggesting that it may be related to the pathogenesis of liver fibrosis. In this study, we used hydrodynamic injection to deliver the lentiviral vector LV5-hIL-8 into mice. We found that hIL-8 could aggravate carbon tetrachloride (CCl4)-induced liver fibrosis through the PI3K/Akt/HIF-1α pathway. It is characterized by excessive accumulation of ECM as well as a significant increase in markers of liver injury. In addition, in PDGF-induced HSCs, we also demonstrated that hIL-8 could aggravate ECM accumulation through the PI3K/Akt/HIF-1α pathway. In conclusion, the results of this study on hIL-8 may help to identify potential targets for the clinical treatment of liver fibrosis.


Subject(s)
Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Mice , Animals , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Interleukin-8/metabolism , Hepatic Stellate Cells/metabolism , Liver Cirrhosis/pathology
20.
Transl Lung Cancer Res ; 11(10): 2094-2110, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36386459

ABSTRACT

Background: Differentiating between benign and malignant pulmonary nodules is a diagnostic challenge, and inaccurate detection can result in unnecessary invasive procedures. Cell-free DNA (cfDNA) has been successfully utilized to detect various solid tumors. In this study, we developed a genome-wide approach to explore the characteristics of cfDNA sequencing reads obtained by low-depth whole-genome sequencing (LD-WGS) to diagnose pulmonary nodules. Methods: LD-WGS was performed on cfDNA extracted from 420 plasma samples from individuals with pulmonary nodules that were no more than 30 mm in diameter, as determined by computed tomography (CT). The sequencing read distribution patterns of cfDNA were analyzed and used to establish a model for distinguishing benign from malignant pulmonary nodules. Results: We proposed the concept of weighted reads distribution difference (WRDD) based on the copy number alterations (CNAs) of cfDNA to construct a benign and malignant diagnostic (BEMAD) algorithm model. In a training cohort of 360 plasma samples, the model achieved an average area under the receiver operating characteristic (ROC) curve (AUC) value of 0.84 in 10-fold cross-validation. The model was validated in an independent cohort of 60 plasma samples, obtaining an AUC value of 0.87. The BEMAD model could distinguish benign from malignant nodules at a sensitivity of 74% and a specificity of 86%. Furthermore, analysis of the critical features of the cfDNA using the BEMAD model identified repeat regions that were associated with microsatellite instability, which is an important indicator of tumorigenesis. Conclusions: This study provides a novel non-invasive diagnostic approach to discriminate between benign and malignant pulmonary nodules to avoid unnecessary invasive procedures.

SELECTION OF CITATIONS
SEARCH DETAIL