Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Eur J Med Chem ; 274: 116545, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38823263

ABSTRACT

Prostate cancer (PCa) is one of the most common tumors in men, with the overexpression of prostate-specific membrane. In this study, we developed four new 68Ga-labeled PSMA-targeting tracers by introducing quinoline, phenylalanine and decanoic acid groups to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Four radiotracers were synthesized with radiochemical purity >95 %, and exhibited high stability in vivo and in vitro. The inhibition constants (Ki) of SDTWS01-04 to PSMA were in the nanomolar range (<10 nM). Micro PET/CT imaging and biodistribution analysis revealed that 68Ga-SDTWS01 enabled clear tumor visualization in PET images at 1.5 h post-injection, with excellent pharmacokinetic properties. Notably, the kidney uptake of 68Ga-SDTWS01 significantly reduced, with higher tumor-to-kidney ratio (0.36 ± 0.02), tumor-to-muscle ratio (24.31 ± 2.10), compared with 68Ga-PSMA-11 (T/K: 0.15 ± 0.01; T/M: 14.97 ± 1.40), suggesting that 68Ga-SDTWS01 is a promising radiotracer for the diagnosis of PCa. Moreover, SDTWS01 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for the treatment of PCa.


Subject(s)
Gallium Radioisotopes , Glutamate Carboxypeptidase II , Positron Emission Tomography Computed Tomography , Prostatic Neoplasms , Gallium Radioisotopes/chemistry , Humans , Male , Animals , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/drug therapy , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/antagonists & inhibitors , Tissue Distribution , Mice , Radiopharmaceuticals/chemical synthesis , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Antigens, Surface/metabolism , Molecular Structure , Cell Line, Tumor
2.
Eur J Nucl Med Mol Imaging ; 51(9): 2819-2832, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38683349

ABSTRACT

PURPOSE: A series of new 68Ga-labeled tracers based on [68Ga]Ga-PSMA-617 were developed to augment the tumor-to-kidney ratio and reduce the activity accumulation in bladder, ultimately minimize radiation toxicity to the urinary system. METHODS: We introduced quinoline group, phenylalanine and decanoic acid into different tracers to enhance their lipophilicity, strategically limiting their metabolic pathway through the urinary system. Their binding affinity onto LNCaP cells was determined through in vitro saturation assays and competition binding assays. In vivo metabolic study, PET imaging and biodistribution experiment were performed in LNCaP tumor-bearing B-NSG male mice. The most promising tracer was selected for first-in-human study. RESULTS: Four radiotracers were synthesized with radiochemical purity (RCP) > 95% and molar activity in a range of 20.0-25.5 GBq/µmol. The binding affinities (Ki) of TWS01, TWS02 to PSMA were in the low nanomolar range (< 10 nM), while TWS03 and TWS04 exhibited binding affinities with Ki > 20 nM (59.42 nM for TWS03 and 37.14 nM for TWS04). All radiotracers exhibited high stability in vivo except [68Ga]Ga-TWS03. Micro PET/CT imaging and biodistribution analysis revealed that [68Ga]Ga-TWS02 enabled clear tumor visualization in PET images at 1.5 h post-injection, with higher tumor-to-kidney ratio (T/K, 0.93) and tumor-to-muscle ratio (T/M, 107.62) compared with [68Ga]Ga-PSMA-617 (T/K: 0.39, T/M: 15.01) and [68Ga]Ga-PSMA-11 (T/K: 0.15, T/M: 24.00). In first-in-human study, [68Ga]Ga-TWS02 effectively detected PCa-associated lesions including primary and metastatic lesions, with lower accumulation in urinary system, suggesting that [68Ga]Ga-TWS02 might be applied in the detection of bladder invasion, with minimized radiation toxicity to the urinary system. CONCLUSION: Introduction of quinoline group, phenylalanine and decanoic acid into different tracers can modulate the binding affinity and pharmacokinetics of PSMA in vivo. [68Ga]Ga-TWS02 showed high binding affinity to PSMA, excellent pharmacokinetic properties and clear imaging of PCa-associated lesions, making it a promising radiotracer for the clinical diagnosis of PCa. Moreover, TWS02 with a chelator DOTA could also label 177Lu and 225Ac, which could be used for PCa treatment without significant side effects. TRIAL REGISTRATION: The clinical evaluation of this study was registered On October 30, 2021 at https://www.chictr.org.cn/ (No: ChiCTR2100052545).


Subject(s)
Glutamate Carboxypeptidase II , Positron-Emission Tomography , Humans , Male , Mice , Animals , Tissue Distribution , Cell Line, Tumor , Glutamate Carboxypeptidase II/metabolism , Positron-Emission Tomography/methods , Radioactive Tracers , Gallium Radioisotopes/pharmacokinetics , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/radiotherapy , Antigens, Surface/metabolism , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/chemistry , Radiochemistry , Dipeptides/pharmacokinetics , Dipeptides/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Heterocyclic Compounds, 1-Ring/pharmacokinetics , Positron Emission Tomography Computed Tomography/methods
3.
Dalton Trans ; 53(18): 7946-7952, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38646723

ABSTRACT

The absence of better biomarkers currently limits early diagnosis and treatment of triple-negative breast cancer (TNBC). Our previously published study reported that the cyclic-peptide SD01 exhibited specific binding to EphA2 (Ephrin type-A receptor 2) on TNBC. To develop a novel PET imaging agent, we prepared gallium-68 (68Ga) labeled-DOTA-SD01 and evaluated its specificity and effectiveness through micro PET/CT imaging in a TNBC-bearing mouse model. SD01 and a control linear peptide YSA were conjugated to DOTA and subsequently labeled with 68Ga, obtaining 68Ga-DOTA-SD01 and 68Ga-DOTA-YSA. Both showed high radiochemical purity, stability, good hydrophilicity, and high binding affinity to 4T1 cells. Micro PET/CT imaging showed high radioactivity accumulation in tumors; SUVmean (mean standardized uptake value) of tumors in the group of 68Ga-DOTA-SD01 was 3.34 ± 0.25 and 2.65 ± 0.32 in the group of 68Ga-DOTA-YSA; T/NT ratios (target to non-target, SUVmean ratios of tumor to muscle) were 3.12 ± 0.06 and 2.77 ± 0.11 at 30 min, respectively (p < 0.05). The biodistribution study showed that tumor uptake % ID per g (percentage of injected dose per gram of tissue) in the group of 68Ga-DOTA-SD01 was 2.73 ± 0.34, and 1.77 ± 0.38 in the group of 68Ga-DOTA-YSA; T/NT ratios (radioactivity of tumor to muscle) were 3.55 ± 0.12 and 3.05 ± 0.10 for both groups at 30 min, respectively (p < 0.05). All these suggest that 68Ga-DOTA-SD01 may act as a better novel PET imaging agent for EphA2 positive tumors, such as TNBC.


Subject(s)
Gallium Radioisotopes , Peptides, Cyclic , Positron Emission Tomography Computed Tomography , Receptor, EphA2 , Triple Negative Breast Neoplasms , Animals , Female , Humans , Mice , Cell Line, Tumor , Gallium Radioisotopes/chemistry , Heterocyclic Compounds, 1-Ring/chemistry , Mice, Inbred BALB C , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacokinetics , Radiopharmaceuticals/chemistry , Receptor, EphA2/metabolism , Tissue Distribution , Triple Negative Breast Neoplasms/diagnostic imaging
4.
Nat Metab ; 6(3): 531-549, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38409606

ABSTRACT

Ageing increases susceptibility to neurodegenerative disorders, such as Alzheimer's disease (AD). Serum levels of sclerostin, an osteocyte-derived Wnt-ß-catenin signalling antagonist, increase with age and inhibit osteoblastogenesis. As Wnt-ß-catenin signalling acts as a protective mechanism for memory, we hypothesize that osteocyte-derived sclerostin can impact cognitive function under pathological conditions. Here we show that osteocyte-derived sclerostin can cross the blood-brain barrier of old mice, where it can dysregulate Wnt-ß-catenin signalling. Gain-of-function and loss-of-function experiments show that abnormally elevated osteocyte-derived sclerostin impairs synaptic plasticity and memory in old mice of both sexes. Mechanistically, sclerostin increases amyloid ß (Aß) production through ß-catenin-ß-secretase 1 (BACE1) signalling, indicating a functional role for sclerostin in AD. Accordingly, high sclerostin levels in patients with AD of both sexes are associated with severe cognitive impairment, which is in line with the acceleration of Αß production in an AD mouse model with bone-specific overexpression of sclerostin. Thus, we demonstrate osteocyte-derived sclerostin-mediated bone-brain crosstalk, which could serve as a target for developing therapeutic interventions against AD.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Amyloid beta-Peptides/therapeutic use , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/therapeutic use , Osteocytes/metabolism , Osteocytes/pathology , beta Catenin/metabolism , beta Catenin/therapeutic use , Aspartic Acid Endopeptidases/metabolism , Aspartic Acid Endopeptidases/therapeutic use , Wnt Signaling Pathway , Cognition , Aging
5.
Adv Sci (Weinh) ; 11(14): e2307338, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342630

ABSTRACT

The severity of osteoarthritis (OA) and cartilage degeneration is highly associated with synovial inflammation. Although recent investigations have revealed a dysregulated crosstalk between fibroblast-like synoviocytes (FLSs) and macrophages in the pathogenesis of synovitis, limited knowledge is available regarding the involvement of exosomes. Here, increased exosome secretion is observed in FLSs from OA patients. Notably, internalization of inflammatory FLS-derived exosomes (inf-exo) can enhance the M1 polarization of macrophages, which further induces an OA-like phenotype in co-cultured chondrocytes. Intra-articular injection of inf-exo induces synovitis and exacerbates OA progression in murine models. In addition, it is demonstrated that inf-exo stimulation triggers the activation of glycolysis. Inhibition of glycolysis using 2-DG successfully attenuates excessive M1 polarization triggered by inf-exo. Mechanistically, HIF1A is identified as the determinant transcription factor, inhibition of which, both pharmacologically or genetically, relieves macrophage inflammation triggered by inf-exo-induced hyperglycolysis. Furthermore, in vivo administration of an HIF1A inhibitor alleviates experimental OA. The results provide novel insights into the involvement of FLS-derived exosomes in OA pathogenesis, suggesting that inf-exo-induced macrophage dysfunction represents an attractive target for OA therapy.


Subject(s)
Exosomes , Osteoarthritis , Synoviocytes , Synovitis , Humans , Mice , Animals , Synoviocytes/pathology , Synoviocytes/physiology , Cells, Cultured , Inflammation , Synovitis/pathology , Fibroblasts/pathology , Macrophages/pathology , Glycolysis
6.
Cancer Imaging ; 24(1): 19, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38279185

ABSTRACT

GRPR is a type of seven-transmembrane G-protein coupled receptor that belongs to the bombesin protein receptor family. It is highly expressed in various cancers, including prostate cancer, breast cancer, lung cancer, gastrointestinal cancer, and so on. As a result, molecular imaging studies have been conducted using radiolabeled GRPR ligands for tumor diagnosis, as well as monitoring of recurrence and metastasis. In this paper, we provided a comprehensive overview of relevant literature from the past two decades, with a specific focus on the advancements made in radiolabeled GRPR ligands for imaging prostate cancer and breast cancer.


Subject(s)
Breast Neoplasms , Prostatic Neoplasms , Male , Humans , Positron Emission Tomography Computed Tomography/methods , Receptors, Bombesin/metabolism , Bombesin/metabolism , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology
7.
Int J Biol Macromol ; 253(Pt 8): 127324, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37838116

ABSTRACT

Stearic acid (C18:0, SA) is a saturated long-chain fatty acid (LCFA) that has a prominent function in lactating dairy cows. It is obtained primarily from the diet and is stored in the form of triacylglycerol (TAG) molecules. The transmembrane glycoprotein cluster of differentiation 36 (CD36) is also known as fatty acid translocase, but whether SA promotes lipid synthesis through CD36 and FAK/mTORC1 signaling is unknown. In this study, we examined the function and mechanism of CD36-mediated SA-induced lipid synthesis in bovine mammary epithelial cells (BMECs). SA-enriched supplements enhanced lipid synthesis and the FAK/mTORC1 pathway in BMECs. SA-induced lipid synthesis, FAK/mTORC1 signaling, and the expression of lipogenic genes were impaired by anti-CD36 and the CD36-specific inhibitor SSO, whereas overexpression of CD36 effected the opposite results. Inhibition of FAK/mTORC1 by TAE226/Rapamycin attenuated SA-induced TAG synthesis, inactivated FAK/mTORC1 signaling, and downregulated the lipogenic genes PPARG, CD36, ACSL1, SCD, GPAT4, LIPIN1, and DGAT1 at the mRNA and protein levels in BMECs. By coimmunoprecipitation and yeast two-hybrid screen, CD36 interacted directly with Fyn but not Lyn, and Fyn bound directly to FAK; FAK also interacted directly with TSC2. CD36 linked FAK through Fyn, and FAK coupled mTORC1 through TSC2 to form the CD36/Fyn/FAK/mTORC1 signaling axis. Thus, stearic acid promotes lipogenesis through CD36 and Fyn/FAK/mTORC1 signaling in BMECs. Our findings provide novel insights into the underlying molecular mechanisms by which LCFA supplements promote lipid synthesis in BMECs.


Subject(s)
Lactation , Lipogenesis , Female , Cattle , Animals , Lipogenesis/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mammary Glands, Animal/metabolism , Stearic Acids/pharmacology , Fatty Acids/metabolism , Epithelial Cells/metabolism
8.
iScience ; 26(10): 107884, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37766995

ABSTRACT

Streptococcus agalactiae (S. agalactiae) is a contagious obligate parasite of the udder in dairy cows. Here, we examined S. agalactiae-host interactions in bovine mammary epithelial cells (BMECs) in vitro. We found that S. agalactiae infected BMECs through laminin ß2 and integrin. Crk, Vps25, and RhoA were differentially expressed in S. agalactiae-infected cells. S. agalactiae infection activated FAK and Crk. FAK deficiency decreased the number of intracellular S. agalactiae and Crk activation. Knockdown of Crk or Vps25 increased the level of intracellular S. agalactiae, whereas its overexpression had the opposite effect. RhoA expression and actin cytoskeleton were altered in S. agalactiae-infected BMECs. Crk and Vps25 interact in cells, and invaded S. agalactiae also activates Crk, allowing it to cooperate with Vps25 to defend against intracellular infection by S. agalactiae. This study provides insights into the mechanism by which intracellular infection by S. agalactiae is regulated in BMECs.

9.
Biomed J ; : 100651, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37562773

ABSTRACT

BACKGROUND: Dysregulation of long non-coding RNAs (lncRNAs) is an important component of tumorigenesis. Aberrant expression of lncRNA taurine upregulated gene 1 (lncTUG1) has been reported in various tumors; however, its precise role and key targets critically involved in osteosarcoma (OS) progression remains unclear. METHODS: The expression profiles of lncRNAs and its regulated miRNAs related to OS progression were assessed by bioinformatics analysis and confirmed by qRT-PCR of OS cells. The miRNA targets were identified by transcriptome sequencing and verified by luciferase reporter and RNA pull-down assays. Several in vivo and in vitro approaches, including CCK8 assay, western blot, qRT-PCR, lentiviral transduction and OS cell xenograft mouse model were established to validate the effects of lncTUG1 regulation of miRNA and the downstream target genes on OS cell growth, apoptosis and progression. RESULTS: We found that lncTUG1 and miR-26a-5p were inversely up or down-regulated in OS cells, and siRNA-mediated lncTUG1 knockdown reversed the miR-26a-5p down-regulation and suppressed proliferation and enhanced apoptosis of OS cells. Further, we identified that an oncoprotein ZBTB7C was also upregulated in OS cells that were subjected to lncTUG1/miR-26a-5p regulation. More importantly, ZBTB7C knockdown reduced the ZBTB7C upregulation and ZBTB7C overexpression diminished the anti-OS effects of lncTUG1 knockdown in the OS xenograft model. CONCLUSIONS: Our data suggest that lncTUG1 acts as a miR-26a-5p sponge and promotes OS progression via up-regulating ZBTB7C, and targeting lncTUG1 might be an effective strategy to treat OS.

10.
Cytokine ; 169: 156276, 2023 09.
Article in English | MEDLINE | ID: mdl-37339556

ABSTRACT

Clostridium perfringens (C. perfringens) is an important Gram-positive anaerobic spore-forming pathogen that provokes life-threatening gas gangrene and acute enterotoxaemia, although it colonizes as a component of the symbiotic bacteria in humans and animals. However, the mechanisms by which C. perfringens is cleared from the host remains poorly understood, thereby impeding the development of novel strategies for control this infection. Here, we uncover a beneficial effect of extracellular traps (ETs) formation on bacterial killing and clearance by phagocytes. C. perfringens strain ATCC13124, and wild-type isolates CP1 and CP3 markedly trigger ETs formation in macrophages and neutrophils. As expected, visualization of DNA decorated with histone, myeloperoxidase (MPO) and neutrophils elastase (NE) in C. perfringens-triggered classical ETs structures. Notably, the bacteria-induced ETs formation is an ERK1/2-, P38 MAPK-, store-operated calcium entry (SOCE)-, NADPH oxidase-, histone-, NE-, and MPO-dependent process, and is independent of LDH activity. Meanwhile, the defect of bactericidal activity is mediated by impairing ETs formation in phagocytes. Moreover, In vivo studies indicated that degradation of ETs by DNase I administration leads to a defect in the protection against experimental gas gangrene, with higher mortality rates, exacerbated tissue damage, and more bacterial colonization. Together, these results suggest that phagocyte ETs formation is essential for the host defense against C. perfringens infection.


Subject(s)
Extracellular Traps , Gas Gangrene , Humans , Animals , Gas Gangrene/microbiology , Histones , Phagocytes , Neutrophils , Clostridium perfringens/genetics
11.
J Agric Food Chem ; 71(18): 7119-7130, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37115810

ABSTRACT

Clostridium perfringens is a major cause of infectious foodborne disease, frequently associated with the consumption of raw and undercooked food. Despite intensive studies on clarifying C. perfringens pathogenesis, the molecular mechanisms of host-pathogen interactions remain poorly understood. In soft tissue and mucosal infection models, Gpr120-/- mice, G protein-coupled receptor 120 (GPR120), are more susceptible to C. perfringens infection. Gpr120 deficiency leads to a low survival rate (30 and 10%, p < 0.01), more bacterial loads in the muscle (2.26 × 108 ± 2.08 × 108 CFUs/g, p < 0.01), duodenum (2.80 × 107 ± 1.61 × 107 CFUs/g, p < 0.01), cecum (2.50 × 108 ± 2.05 × 108 CFUs/g, p < 0.01), and MLN (1.23 × 106 ± 8.06 × 105 CFUs/g, p < 0.01), less IL-18 production in the muscle (8.54 × 103 ± 1.20 × 103 pg/g, p < 0.01), duodenum (3.34 × 103 ± 2.46 × 102 pg/g, p < 0.01), and cecum (3.81 × 103 ± 5.29 × 102 pg/g, p < 0.01), and severe organ injury. Obviously, GPR120 facilitates IL-18 production and pathogen control via potassium efflux-dependent NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling. Mechanistically, GPR120 interaction with NLRP3 potentiates the NLRP3 inflammasome assembly. Thus, this study uncovers a novel role of GPR120 in host protection and reveals that GPR120 may be a potential therapeutic target for limiting pathogen infection.


Subject(s)
Clostridium Infections , Inflammasomes , Animals , Mice , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Pyrin Domain , Interleukin-18 , Receptors, G-Protein-Coupled/genetics , Clostridium Infections/genetics , Interleukin-1beta
12.
Gastric Cancer ; 26(4): 528-541, 2023 07.
Article in English | MEDLINE | ID: mdl-36959335

ABSTRACT

Gastric cancer (GC) is one of the most common malignancies in China and is associated with high mortality. The occurrence and development of gastric cancer are related to genetic and environmental factors. Focal adhesion kinase (FAK) is a cytoplasmic nonreceptor protein tyrosine kinase that is activated by the extracellular matrix and growth factors. FAK is highly expressed in cancer and promotes its development by regulating cancer cell proliferation, migration, and angiogenesis. The expression of IL-8 is increased in many types of malignant tumor cells and is linked to their proliferation, migration, invasion, angiogenesis, and EMT. In this study, we found FAK to be essential for the proliferation, migration, and peritoneal metastasis of gastric cancer cells. To examine the molecular regulatory mechanisms of FAK in the peritoneal dissemination of gastric cancer, we performed RNA-seq analysis of MKN-45-FAK-/- and MKN45 cells and demonstrated that IL-8 was downregulated in FAK-deficient cells. Conversely, we confirmed that IL-8 activates FAK activity. We established that IL-8 promotes the proliferation, colony formation, and migration of gastric cancer cells that are partially mediated by FAK. Thus, we propose that an IL-8-FAK-IL-8 positive feedback loop effects the proliferation and migration of gastric cancer cells.


Subject(s)
Stomach Neoplasms , Humans , Focal Adhesion Protein-Tyrosine Kinases/genetics , Stomach Neoplasms/pathology , Interleukin-8/genetics , Cell Proliferation , Cell Movement/genetics , Cell Line, Tumor
14.
Cell Rep ; 41(11): 111803, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516757

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) can be ameliorated by calorie restriction, which leads to the suppressed somatotroph axis. Paradoxically, the suppressed somatotroph axis is associated with patients with NAFLD and is correlated with the severity of fibrosis. How the somatotroph axis becomes dysregulated and whether the repressed somatotroph axis impacts liver damage during the progression of NAFLD are unclear. Here, we identify a regulatory branch of the hepatic integrated stress response (ISR), which represses the somatotroph axis in hepatocytes through ATF3, resulting in enhanced cell survival and reduced cell proliferation. In mouse models of NAFLD, the ISR represses the somatotroph axis, leading to reduced apoptosis and inflammation but decreased hepatocyte proliferation and exacerbated fibrosis in the liver. NAD+ repletion reduces the ISR, rescues the dysregulated somatotroph axis, and alleviates NAFLD. These results establish that the hepatic ISR suppresses the somatotroph axis to control cell fate decisions and liver damage in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Somatotrophs , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Liver/pathology , Hepatocytes/pathology , Liver Cirrhosis/pathology
15.
iScience ; 25(10): 105121, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36185365

ABSTRACT

Despite intense research in understanding Clostridium perfringens (C. perfringens) pathogenesis, the mechanisms by which it is cleared from the host are largely unclarified. In C. perfringens gas gangrene and enterocolitis model, Mlkl -/- mice, lacking mixed lineage kinase-like protein (MLKL), are more susceptible to C. perfringens infection. Mlkl deficiency results in a defect in inflammasome activation, and IL-18 and IL-1ß releases. Exogenous administration of recombinant IL-18 is able to rescue the susceptibility of Mlkl -/- mice. Notably, K+ efflux-dependent NLRP3 inflammasome signaling downstream of active MLKL promotes bacterial killing and clearance. Interestingly, the defect of bactericidal activity is also mediated by decreased classical extracellular trap formation in the absence of Mlkl. Our results demonstrate that MLKL mediates extracellular trap formation in a NLRP3 inflammasome-dependent manner. These findings highlight the requirement of MLKL for host defense against C. perfringens infection through enhancing NLRP3 inflammasome-extracellular traps axis.

16.
J Orthop Translat ; 35: 1-12, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35846727

ABSTRACT

Background: Reduced serum estrogen levels in postmenopausal patients not only aggravate bone loss but also impact myokine secretion. Emerging evidence has revealed the importance of myokines in bone metabolism, and exercise can interfere with the secretion of myokines. However, few studies have explored the impact of exercise on myokine secretion in the postmenopausal osteoporosis (PMOP) process. Methods: Ten-weeks-old C57B/L6 female mice were used for constructing the postmenopausal osteoporosis model. The expression levels of kynurenine aminotransferases (Kats) were detected by RT-PCR and Western Blot. The concentration of serum kynurenic acid (Kyna) was detected by HPLC-MS. Micro-CT analysis was used for determine the changes of bone mineral density and the microstructure. The primary osteoblast and osteoclast were isolated from mice to determine the effect and mechanism of Kyna on the bone formation and resorption. Results: In our research, we found a lower serum level of muscle-derived kynurenic acid (Kyna) in PMOP model mice, accompanied by a decreased level of kynurenine aminotransferases (Kats) in the gastrocnemius muscle. Moreover, treadmill-running exercise upregulated the muscle levels of KATs and increased the serum concentration of Kyna, which was positively correlated with the alleviation of bone loss. Furthermore, we found that exogenous Kyna treatment alleviated bone mineral loss and microstructure destruction in PMOP mice by inhibiting osteoclast maturation and increasing osteoblast viability. Mechanistically, we observed that Kyna reduced the NFκB p65 phosphorylation level by activating the Gpr35 receptor, which inhibited NFATc1 expression in osteoclasts and upregulated Runx2 expression in osteoblasts. Conclusion: Our results revealed that the muscle levels of Kats and serum level of Kyna were negatively correlated with the severity of PMOP. Exercise intervention and exogenous Kyna treatment alleviated the impairment of bone microstructure through the Gpr35 receptor, paving the way for a novel therapeutic intervention in PMOP. The Translational potential of this article: This study provides evidences that Kyna could increase the osteoblastgenesis and inhibit the osteoclastgenesis, which could be a novel therapeutic approach for osteoporosis treatment.

17.
Front Vet Sci ; 8: 756375, 2021.
Article in English | MEDLINE | ID: mdl-34869729

ABSTRACT

Staphylococcus aureus (S. aureus) is one of the main pathogens in cow mastitis, colonizing mammary tissues and being internalized into mammary epithelial cells, causing intracellular infection in the udder. Milk that is produced by cows that suffer from mastitis due to S. aureus is associated with decreased production and changes in protein composition. However, there is limited information on how mastitis-inducing bacteria affect raw milk, particularly with regard to protein content and protein composition. The main purpose of this work was to examine how S. aureus infection affects milk protein synthesis in bovine mammary epithelial cells (BMECs). BMECs were infected with S. aureus, and milk protein and amino acid levels were determined by ELISA after S. aureus invasion. The activity of mTORC1 signaling and the transcription factors NF-κB and STAT5 and the expression of the amino acid transporters SLC1A3 and SLC7A5 were measured by western blot or immunofluorescence and RT-qPCR. S. aureus was internalized by BMECs in vitro, and the internalized bacteria underwent intracellular proliferation. Eight hours after S. aureus invasion, milk proteins were downregulated, and the level of BMECs that absorbed Glu, Asp, and Leu from the culture medium and the exogenous amino acids induced ß-casein synthesis declined. Further, the activity of mTORC1 signaling, NF-κB, and STAT5 was impaired, and SLC1A3 and SLC7A5 were downregulated. Eight hours of treatment with 100 nM rapamycin inhibited NF-κB and STAT5 activity, SLC1A3 and SLC7A5 expression, and milk protein synthesis in BMECs. Thus mTORC1 regulates the expression of SLC1A3 and SLC7A5 through NF-κB and STAT5. These findings constitute a model by which S. aureus infection suppresses milk protein synthesis by decreasing amino acids uptake in BMECs.

18.
Front Vet Sci ; 8: 685548, 2021.
Article in English | MEDLINE | ID: mdl-34414225

ABSTRACT

In addition to serving as the building blocks for protein synthesis, amino acids serve as critical signaling molecules in cells. However, the mechanism through which amino acid signals are sensed in cells is not yet fully understood. This study examined differences in the phosphorylation levels of proteins in response to amino acid signals in Cashmere goat fetal fibroblasts (GFb). Amino acid deficiency was found to induce autophagy and attenuate mammalian/mechanistic target of rapamycin complex (mTORC1)/Unc-51-like autophagy activating kinase 1 (ULK1) signaling in GFb cells. A total of 144 phosphosites on 102 proteins positively associated with amino acid signaling were screened using phosphorylation-based proteomics analysis. The mitogen-activated protein kinase (MAPK) signaling pathway was found to play a potentially important role in the interaction network involved in the response to amino acid signals, according to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and MAPK1/3 may serve as a central hub for the entire network. Motif analysis identified three master motifs, xxx_S_Pxx, xxx_S_xxE, and xxx_S_xDx, which were centered on those phosphosites at which phosphorylation was positively regulated by amino acid signaling. Additionally, the phosphorylation levels of three membrane proteins, the zinc transporter SLC39A7, the sodium-dependent neutral amino acid transporters SLC1A5 and SLC38A7, and three translation initiation factors, eukaryotic initiation factor (eIF)5B, eIF4G, and eIF3C, were positively regulated by amino acid signals. These pivotal proteins were added to currently known signaling pathways to generate a novel model of the network pathways associated with amino acid signals. Finally, the phosphorylation levels of threonine 203 and tyrosine 205 on MAPK3 in response to amino acid signals were examined by western blot analysis, and the results were consistent with the data from the phosphoproteomics analysis. The findings of this study provide new evidence and insights into the precise mechanism through which amino acid signals are sensed and conducted in Cashmere goat fetal fibroblasts.

19.
Biomed Res Int ; 2021: 8621464, 2021.
Article in English | MEDLINE | ID: mdl-33542926

ABSTRACT

In addition to serving as the building blocks for protein synthesis, amino acids can be used as an energy source, through catabolism. The transamination, oxidative deamination, and decarboxylation processes that occur during amino acid catabolism are catalyzed by specific enzymes, including aspartate aminotransferase (AST), glutamate dehydrogenase (GDH), glutamic acid decarboxylase (GAD), and ornithine decarboxylase (ODC); however, the overall molecular mechanisms through which amino acid catabolism occurs remain largely unknown. To examine the role of mechanistic target of rapamycin complex 1 (mTORC1) on amino acid catabolism, mTORC1 was inactivated by rapamycin or shRNA targeting Raptor, versus activated by overexpressing Rheb or amino acids in human hepatocytes. The expression of amino acid catabolic genes and related transcription factor was investigated by RT/real-time PCR and western blot analysis. A few types of amino acid metabolite were examined by ELISA and HPLC analysis. The data showed that inactivated mTORC1 resulted in inhibition of NF-κB and the expression of AST, GDH, GAD, and ODC, whereas activated mTORC1 enhanced NF-κB activation and the expression levels of the catabolism-associated genes. Further, inhibition of NF-κB reduced the expression levels of AST, GDH, GAD, and ODC. mTORC1 upregulated NF-κB activation and the expression of AST and ODC in response to glutamate and ornithine treatments, whereas rapamycin inhibited the utilization of glutamate and ornithine in hepatocytes. Taken together, these results indicated that the mTORC1/NF-κB axis modulates the rate of amino acid catabolism by regulating the expression of key catabolic enzymes in hepatocytes.


Subject(s)
Amino Acids/metabolism , Hepatocytes/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Antibiotics, Antineoplastic/pharmacology , Cells, Cultured , Gene Expression Regulation , Hepatocytes/cytology , Hepatocytes/drug effects , Humans , Ornithine Decarboxylase/metabolism , Signal Transduction , Sirolimus/pharmacology
20.
Cell Commun Signal ; 18(1): 187, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33256738

ABSTRACT

BACKGROUND: Pyroptosis is a recently identified pathway of caspase-mediated cell death in response to microbes, lipopolysaccharide, or chemotherapy in certain types of cells. However, the mechanism of how pyroptosis is regulated is not well-established. METHODS: Herein, the intracellular bacteria were detected by staining and laser confocal microscopy and TEM. Live/dead cell imaging assay was used to examine macrophage death. Western blot and immunohistochemical staining were used to examine the protein changes. IFA was used to identify typical budding vesicles of pyroptosis and the STAT3 nuclear localization. SEM was used to observe the morphological characteristics of pyroptosis. ELISA was used to detect the level of inflammatory cytokines. Pyroptosis was filmed in macrophages by LSCM. RESULTS: S. aureus was internalized by human macrophages. Intracellular S. aureus induced macrophage death. S. aureus invasion increased the expression of NLRP3, Caspase1 (Casp-1 p20) and the accumulation of GSDMD-NT, GSDMD-NT pore structures, and the release of IL-1ß and IL-18 in macrophages. Macrophages pyroptosis induced by S. aureus can be abrogated by blockage of S. aureus phagocytosis. The pyroptosic effect by S. aureus infection was promoted by either rapamycin or Stattic, a specific inhibitor for mTORC1 or STAT3. Inhibition of mTORC1 or STAT3 induced pyroptosis. mTORC1 regulated the pyroptosic gene expression through governing the nuclear localization of STAT3. mTORC1/STAT3 axis may play a regulatory role in pyroptosis within macrophages. CONCLUSIONS: S. aureus infection induces human macrophage pyroptosis, inhibition of mTORC1/STAT3 axis facilitates S. aureus-induced pyroptosis. mTORC1 and STAT3 are associated with pyroptosis. Our findings demonstrate a regulatory function of the mTORC1/STAT3 axis in macrophage pyroptosis, constituting a novel mechanism by which pyroptosis is regulated in macrophages. Video Abstract Macrophages were infected with S. aureus for 3 h (MOI 25:1), and pyroptosis was filmed in macrophages by laser confocal microscopy. A representative field was recorded. Arrow indicates lysing dead cell.


Subject(s)
Macrophages/metabolism , Macrophages/microbiology , Mechanistic Target of Rapamycin Complex 1/metabolism , Pyroptosis , STAT3 Transcription Factor/metabolism , Signal Transduction , Staphylococcus aureus/pathogenicity , Caspase 1/metabolism , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Space/microbiology , Macrophages/pathology , Macrophages/ultrastructure , Phagocytosis , Phosphate-Binding Proteins/metabolism , Signal Transduction/drug effects , Sirolimus/pharmacology , THP-1 Cells , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...