Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Oncol Pharm Pract ; : 10781552241255290, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38772691

ABSTRACT

INTRODUCTION: Imatinib, a tyrosine kinase inhibitor, is the first-line therapy for patients with KIT mutation in gastrointestinal stromal tumor (GIST). Nausea, vomiting, diarrhea, dyspepsia and abdominal pain are common gastrointestinal adverse reactions of imatinib, but imatinib-induced ulcerative colitis (UC) is rarely reported. CASE REPORT: We presented a case of UC induced by imatinib in a 56-year-old male patient who experienced this adverse event after 5 years of imatinib 400 mg/d treatment following GIST resection. MANAGEMENT AND OUTCOME: The patient's diarrhea and bloody stools showed significant improvement following the discontinuation of imatinib therapy and administration of antidiarrheal medications. Then, imatinib was restarted at a daily dosage of 400 mg. DISCUSSION: UC is a rare adverse event associated with imatinib. Physicians should consider the possibility of UC induced by imatinib when patients present with diarrhea and bloody stool after receiving imatinib treatment. This case offered objective evidence of UC induced by imatinib.

2.
Medicine (Baltimore) ; 102(47): e36394, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-38013272

ABSTRACT

Colorectal cancer is the third most common malignant tumor worldwide, causing serious harm to human health. Epigenetic modification, especially RNA methylation modification, plays a critical role in the occurrence and development of colorectal cancer via post-transcriptional regulation of mRNA and non-coding RNA expression. Among these, N6-methyladenosine (m6A) is the most common chemical modification in mammals, which plays an important role in the progress of cancer, including colorectal cancer. m6A is a dynamic and reversible process and is mainly regulated by m6A methyltransferase ("writers"), m6A demethylases ("erasers"), and m6A binding proteins ("readers"). Herein, we reviewed recent advances in the role of m6A modification in colorectal cancer and focused on the factors affecting m6A modification. Furthermore, we discussed the clinical application of m6A modifications for colorectal cancer diagnosis, prognosis, and treatment and provided guides in clinical practice. m6A modification and m6A regulators play significant roles in the occurrence and development of colorectal cancer by regulating the stability and translation of mRNAs, the maturation of miRNAs, and the function of lncRNAs. m6A regulators can play biological roles in colorectal cancer through m6A-dependent manner or m6A-independent manner. Multiplies of internal factors, including miRNAs and lncRNAs, and external factors can also regulate the m6A modification by completing with m6A regulators in a base complement manner, regulating the expression of m6A and mutating the m6A site. m6A regulators and m6A modificantion are diagnostic and prognostic markers for CRC. Therefore, m6A regulators and m6A modificantion may be potential therapeutic target for CRC in the future.


Subject(s)
Colorectal Neoplasms , MicroRNAs , RNA, Long Noncoding , Animals , Humans , RNA, Long Noncoding/genetics , Adenosine , RNA, Messenger , Colorectal Neoplasms/genetics , Mammals
3.
Mol Med ; 28(1): 21, 2022 02 19.
Article in English | MEDLINE | ID: mdl-35183103

ABSTRACT

BACKGROUND: Many clinical studies have shown a correlation between proton pump inhibitors (PPIs) and osteoporosis or fractures. The purpose of this study was to establish a murine model of chronic oral PPI administration to verify whether PPIs caused bone metabolic impairment and investigate the relevant molecular mechanism underlying the effects of PPIs on MC3T3-E1 murine osteoblasts. METHODS: A lansoprazole-induced bone loss model was used to investigate the damaging effects of PPIs. In vivo, immunohistochemistry, Hematoxylin-Eosin (HE) staining, micro-CT analysis, and blood biochemical analyses were used to evaluate the effect of lansoprazole on bone injury in mice. In vitro, the effects of lansoprazole and related signaling pathways in MC3T3-E1 cells were investigated by CCK-8 assays, EdU assays, flow cytometry, laser confocal microscopy, patch clamping, reverse transcription-quantitative polymerase chain reaction and Western blotting. RESULTS: After 6 months of lansoprazole gavage in ICR mice, the micro-CT results showed that compared with that in the vehicle group, the bone mineral density (BMD) in the high-dose group was significantly decreased (P < 0.05), and the bone microarchitecture gradually degraded. Biochemical analysis of bone serum showed that blood calcium and phosphorus were both decreased (P < 0.01). We found that long-term administration of lansoprazole impaired skeletal function in mice. In vitro, we found that lansoprazole (LPZ) could cause calcium overload in MC3T3-E1 cells leading to apoptosis, and 2-APB, an inhibitor of IP3R calcium release channel and SOCE pathway, effectively blocked increase in calcium caused by LPZ, thus protecting cell viability. CONCLUSIONS: Longterm administration of LPZ induced osteoporotic symptoms in mice, and LPZ triggered calcium increases in osteoblasts in a concentration-dependent manner. Intracellular calcium ([Ca2+]i) persisted at a high concentration, thereby causing endoplasmic reticulum stress (ERS) and inducing osteoblast apoptosis.


Subject(s)
Calcium Signaling , Osteoporosis , Animals , Calcium/metabolism , Lansoprazole/adverse effects , Lansoprazole/metabolism , Mice , Mice, Inbred ICR , Osteoblasts , Osteoporosis/chemically induced , Osteoporosis/drug therapy , Osteoporosis/metabolism
4.
Ann Transl Med ; 8(21): 1385, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33313130

ABSTRACT

BACKGROUND: Our study aims to explore the effect of genetics on the pharmacodynamics (PD) and pharmacokinetics (PK) of cinacalcet in healthy Chinese subjects; to investigate the effect of dietary factors on cinacalcet, and to evaluate the safety of cinacalcet under fasting and non-fasting conditions using a bioequivalence trial. METHODS: We investigated the relationship of cinacalcet PK with single nucleotide polymorphisms (SNPs) of CYP3A4, CYP1A2 and CYP2D6, and of cinacalcet PD with SNPs of calcium-sensitive receptors (CASR) and vitamin D receptors (VDR) in 65 healthy Chinese subjects recruited to participate in this study. Our study was a phase I, open-label, randomized, two-period, two-sequence crossover, a single-center clinical study designed under both fasting and non-fasting conditions to investigate the effect of dietary factors on cinacalcet. Plasma cinacalcet concentrations were analyzed using a validated HPLC-MS/MS assay. Clinical laboratory tests evaluated safety. Thirteen SNPs of CASR, VDR, and CYP genes were selected for pharmacogenetic analysis. RESULTS: CYP3A4 rs4646437 was found to be associated with the PK of cinacalcet under fasting conditions (P<0.01). Subjects carrying T alleles of rs4646437 appeared to metabolize cinacalcet poorly. The Cmax and AUC of subjects in the non-fasting group were significantly higher (P<0.0001) than those in the fasting group. The Tmax, CL/F, and Vd/F in the fasting group were significantly higher (P<0.0001) than those in the non-fasting group. In the fasting group, the geometric least square mean ratios (T/R) of the Cmax and AUC0-t were 109.89% and 105.33%, and the corresponding 90% CIs were 98.36-122.79% and 98.04-113.15%, respectively. In the non-fasting group, the T/R of the Cmax and AUC0-t were 100.74% and 99.09%, and the corresponding 90% CIs were 92.65-109.54% and 94.79-103.58%, respectively. All adverse events (AEs) were mild, and no serious adverse events (SAEs) occurred during the bioequivalence trial. CONCLUSIONS: Following our investigation, we reached the following conclusions: CYP3A4 rs4646437 may affect cinacalcet PK; the reference and test preparations of cinacalcet were bioequivalent under fasting and non-fasting conditions and were safe to use; and dietary factors had a significant effect on the PK of cinacalcet, in that exposure to the drug increased when cinacalcet was taken after eating.

5.
Front Pharmacol ; 10: 854, 2019.
Article in English | MEDLINE | ID: mdl-31417408

ABSTRACT

Imatinib is a first-line drug for the treatment of gastrointestinal stromal tumors (GIST). This study aims to investigate the influence of different kinds of protein concentrations and genetic polymorphisms of metabolizing enzymes and drug transporters on unbound imatinib and its active metabolite N-desmethyl-imatinib concentration, as well as the relationship between adverse drug reactions (ADRs) and drug concentration. A total of 62 Chinese patients with GIST were genotyped for five single nucleotide polymorphisms (SNPs). Total and unbound 3h and trough concentration of imatinib and N-desmethyl-imatinib in GIST patients were determined by an LC-MS/MS method combined with an equilibrium dialysis. Single-Use Red Plate with inserts was used to separate the unbound drug. When the protein concentration became higher, the unbound imatinib and N-desmethyl-imatinib plasma concentration got higher (p < 0.05). Patients with GA genotype in rs755828176 had significantly higher unbound N-desmethyl-imatinib dose-adjusted trough plasma concentrations (p = 0.012). Patients with CC genotype in rs3814055 had significantly higher unbound imatinib dose-adjusted trough plasma concentrations (p = 0.040). The mean total imatinib C3h of patients with ADRs (3.10 ± 0.96 µg/ml) was significantly higher than that of patients without ADRs (p = 0.023). The mean total N-desmethyl-imatinib C3h of patients (0.64 ± 0.21 µg/ml) with ADRs was significantly higher than that of patients without ADRs (p = 0.004). The mean unbound N-desmethyl-imatinib C3h of patients with ADRs (6.49 ± 2.53 ng/ml) was significantly higher than that of patients without ADRs (p = 0.042). The total and unbound C3h of imatinib and N-desmethyl-imatinib in patients with ADRs was significantly higher than that in patients without ADRs (p < 0.05). Protein concentrations have great influence on the unbound imatinib and N-desmethyl-imatinib concentrations. The genetic polymorphisms of CYP3A4 rs755828176 and NR1I2 rs3814055 were significantly associated with unbound imatinib and N-desmethyl-imatinib dose-adjusted trough plasma levels. The total and unbound imatinib or N-desmethyl-imatinib concentration in patients with GIST was also significantly correlated with ADRs.

SELECTION OF CITATIONS
SEARCH DETAIL