Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 14: 1416537, 2024.
Article in English | MEDLINE | ID: mdl-39040600

ABSTRACT

Infection of ruminants such as cattle with Mycobacterium avium subsp. paratuberculosis (MAP) causes Johne's disease, a disease characterized by chronic inflammation of the small intestine and diarrhoea. Infection with MAP is acquired via the faecal-to-oral route and the pathogen initially invades the epithelial lining of the small intestine. In this study we used an in vitro 3D mouse enteroid model to determine the influence of M cells in infection of the gut epithelia by MAP, in comparison with another bacterial intestinal pathogen of veterinary importance, Salmonella enterica serovar Typhimurium. The differentiation of M cells in the enteroid cultures was induced by stimulation with the cytokine receptor activator of nuclear factor-κB ligand (RANKL), and the effects on MAP and Salmonella uptake and intracellular survival were determined. The presence of M cells in the cultures correlated with increased uptake and intracellular survival of Salmonella, but had no effect on MAP. Interestingly neither pathogen was observed to preferentially accumulate within GP2-positive M cells.


Subject(s)
Mycobacterium avium subsp. paratuberculosis , Salmonella typhimurium , Animals , Mycobacterium avium subsp. paratuberculosis/physiology , Salmonella typhimurium/physiology , Salmonella typhimurium/pathogenicity , Mice , Paratuberculosis/microbiology , Microbial Viability , Intestinal Mucosa/microbiology , Cattle , M Cells
2.
Sci Rep ; 14(1): 13749, 2024 06 14.
Article in English | MEDLINE | ID: mdl-38877012

ABSTRACT

Prion diseases are fatal, infectious, neurodegenerative disorders resulting from accumulation of misfolded cellular prion protein in the brain. Early pathological changes during CNS prion disease also include reactive astrocyte activation with increased CD44 expression, microgliosis, as well as loss of dendritic spines and synapses. CD44 is a multifunctional cell surface adhesion and signalling molecule which is considered to play roles in astrocyte morphology and the maintenance of dendritic spine integrity and synaptic plasticity. However, the role of CD44 in prion disease was unknown. Here we used mice deficient in CD44 to determine the role of CD44 during prion disease. We show that CD44-deficient mice displayed no difference in their response to CNS prion infection when compared to wild type mice. Furthermore, the reactive astrocyte activation and microgliosis that accompanies CNS prion infection was unimpaired in the absence of CD44. Together, our data show that although CD44 expression is upregulated in reactive astrocytes during CNS prion disease, it is dispensable for astrocyte and microglial activation and the development of prion neuropathogenesis.


Subject(s)
Astrocytes , Hyaluronan Receptors , Prion Diseases , Animals , Astrocytes/metabolism , Astrocytes/pathology , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Prion Diseases/metabolism , Prion Diseases/pathology , Prion Diseases/genetics , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Brain/metabolism , Brain/pathology , Mice, Inbred C57BL
3.
iScience ; 27(3): 109119, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38384841

ABSTRACT

In a previous report, keratinocytes were shown to share their gene expression profile with surrounding Langerhans cells (LCs), influencing LC biology. Here, we investigated whether transferred material could substitute for lost gene products in cells subjected to Cre/Lox conditional gene deletion. We found that in human Langerin-Cre mice, epidermal LCs and CD11b+CD103+ mesenteric DCs overcome gene deletion if the deleted gene was expressed by neighboring cells. The mechanism of material transfer differed from traditional antigen uptake routes, relying on calcium and PI3K, being susceptible to polyguanylic acid inhibition, and remaining unaffected by inflammation. Termed intracellular monitoring, this process was specific to DCs, occurring in all murine DC subsets tested and human monocyte-derived DCs. The transferred material was presented on MHC-I and MHC-II, suggesting a role in regulating immune responses.

SELECTION OF CITATIONS
SEARCH DETAIL