Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38895814

ABSTRACT

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Subject(s)
Polybrominated Biphenyls , Water Pollutants, Chemical , Animals , Polybrominated Biphenyls/toxicity , Polybrominated Biphenyls/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Anaerobiosis , Wastewater/chemistry , Biota , Flame Retardants/toxicity , Flame Retardants/metabolism , Waste Disposal, Fluid/methods , Chironomidae/drug effects , Chironomidae/metabolism , Aquatic Organisms/drug effects , Aquatic Organisms/metabolism
2.
Bioresour Technol ; 399: 130559, 2024 May.
Article in English | MEDLINE | ID: mdl-38460566

ABSTRACT

Hydrothermal liquefaction (HTL) shows promise for converting wet biomass waste into biofuel, but the resulting high-strength process water (PW) requires treatment. This study explored enhancing energy recovery by anaerobic digestion using semi-batch reactors. Co-digesting manure with HTL-PW from wheat straw-manure co-HTL yielded methane (43-49% of the chemical oxygen demand, COD) at concentrations up to 17.8 gCOD·L-1, whereas HTL-PW from sewage sludge yielded methane (43% of the COD) up to only 12.8 gCOD·L-1 and complete inhibition occurred at 17 gCOD·L-1. Microbial community shifts confirmed inhibition of methanogenic archaea, while hydrolytic-fermentative bacteria were resilient. Differences in chemical composition, particularly higher levels of N-containing heterocyclic compounds in PW of sewage sludge, likely caused the microbial inhibition. The considerable potential of combining HTL with anaerobic digestion for enhanced energy recovery from straw-manure in an agricultural context is demonstrated, yet sewage sludge HTL-PW requires more advanced approaches to deal with methanogenesis inhibitors.


Subject(s)
Sewage , Wastewater , Sewage/microbiology , Triticum , Manure , Anaerobiosis , Bioreactors , Methane , Biofuels
3.
Biotechnol Biofuels Bioprod ; 16(1): 183, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38017526

ABSTRACT

The biogas produced through anaerobic digestion (AD) of renewable feedstocks is one of the promising alternatives to replace fossil-derived energy. Even though lignocellulosic biomass is the most abundant biomass on earth, only a small fraction is being used towards resources recovery, leaving a great potential unexploited. In this study, the combination of state-of-art genomic techniques and engineered systems were used to further advance the knowledge on biogas production from lignocellulosic-rich residues and the microbiome involved in the anaerobic digestion hereof. A long-term adapted anaerobic microbiome capable of degrading wheat straw as the sole substrate was investigated using protein stable isotope probing (protein-SIP). The results indicated that a diverse microbial community, primarily composed of Firmicutes and Methanogens, played crucial roles in cellulose degradation and methane production. Notably, Defluviitoga tunisiensis, Syntrophothermus lipocalidus, and Pelobacter carbinolicus were identified as direct metabolizers of cellulose, while Dehalobacterium assimilated labelled carbon through cross-feeding. This study provides direct evidence of primary cellulose degraders and sheds light on their genomic composition. By harnessing the potential of lignocellulosic biomass and understanding the microbial communities involved, we can promote sustainable biogas production, contributing to energy security and environmental preservation.

4.
J Environ Manage ; 348: 119046, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37832286

ABSTRACT

Sewage sludge management poses challenges due to its environmental impact, varying composition, and stringent regulatory requirements. In this scenario, hydrothermal liquefaction (HTL) is a promising technology for producing biofuel and extracting phosphorus from sewage sludge. However, the toxic nature of the resulting process water (HTL-PW) raises concerns about integrating HTL into conventional wastewater treatment processes. This study investigated the inhibitory effects of HTL-PW on the activity of the main microbial functions in conventional activated sludge. Upon recirculation of the HTL-PW from the excess sludge into the wastewater treatment plant, the level of COD in the influent is expected to increase by 157 mgO2⋅L-1, resulting in 44% nitrification inhibition (IC50 of 197 mg⋅L-1). However, sorption of inhibitory compounds on particles can reduce nitrification inhibition to 27% (IC50 of 253 mg⋅L-1). HTL-PW is a viable carbon source for denitrification, showing nearly as high denitrification rates as acetate and only 17% inhibition at 157 mgO2⋅L-1 COD. Under aerobic conditions, heterotrophic organic nitrogen and organic matter conversion remains unaffected up to 223 mgO2⋅L-1 COD, with COD removal higher than 94%. This study is the first to explore the full integration of HTL in wastewater treatment plants for biofuel production from the excess activated sludge. Potential nitrification inhibition is concerning, and further long-term studies are needed to fully investigate the impacts.


Subject(s)
Nitrification , Water Purification , Sewage , Biofuels , Magnesium Oxide , Water Purification/methods , Nitrogen , Bioreactors , Denitrification , Waste Disposal, Fluid/methods
5.
Water Res ; 245: 120599, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37717325

ABSTRACT

Can biofilms enhance the rates of phosphorus removal in wastewater treatment? In order to narrow the scientific gap on the effect of biofilm thickness on the activity and microbial community of phosphorus-accumulating bacteria, this study investigated biofilms of 30 to 1000 µm thickness in a moving bed biofilm reactor. Measurements on 5 different biofilm carriers showed that biomass-specific phosphorus release and uptake rates increased as a function of biofilm thickness for biofilms thinner than about 110 µm but were lower for thicker biofilms of about 550-1000 µm. The reduced phosphorus uptake and release rates in the thickest biofilms can result from substrate mass transfer limitations whereas the low activity in the thinnest biofilms can be related to a too high turnover rate in the biofilm due to heterotrophic growth. Additionally, the microbial ecology of the different biofilms confirms the observed phosphorus uptake and release rates. The results from the full-length 16S rRNA gene sequencing of the bacterial community showed that the thicker biofilms were characterized by higher relative abundance (40-58%) of potential phosphorus accumulating genera Zoogloea, Acinetobacter, Dechloromonas and Ca. Accumulibacter. In contrast, the thinner biofilms were dominated by the genus Ferribacterium (34-60%), which might be competing with phosphorus-accumulating bacteria as indicated by the relatively high acetate uptake rates in the thinner biofilms. It is concluded that there is an optimal biofilm thickness of 100-500 µm, at which the phosphorus accumulating bacteria have the highest activity.

6.
Environ Pollut ; 310: 119786, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35872283

ABSTRACT

Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified. Protein-stable isotope probing (protein-SIP) has become a cutting-edge technique in microbial ecology for enabling the link between identity and function under in situ conditions. Therefore, it was hypothesized that combining protein-based stable isotope probing with metagenomics could be used to identify and provide genomic insight into the TBBPA-degrading organisms. The identified 13C-labelled peptides were found to belong to organisms affiliated to Phytobacter, Clostridium, Sporolactobacillus, and Klebsilla genera. The functional classification of identified labelled peptides revealed that TBBPA is not only transformed by cometabolic reactions, but also assimilated into the biomass. By application of the proteogenomics with labelled micropollutants (protein-SIP) and metagenome-assembled genomes, it was possible to extend the current perspective of the diversity of TBBPA degraders in wastewater and predict putative TBBPA degradation pathways. The study provides a link to the active TBBPA degraders and which organisms to favor for optimized biodegradation.


Subject(s)
Polybrominated Biphenyls , Proteogenomics , Anaerobiosis , Biodegradation, Environmental , Bioreactors , Ecosystem , Isotopes
7.
Sci Total Environ ; 808: 152016, 2022 Feb 20.
Article in English | MEDLINE | ID: mdl-34856259

ABSTRACT

The occurrence of brominated flame retardants such as Tetrabromobisphenol A (TBBPA) in water bodies poses a serious threat to aquatic ecosystems. Degradation of TBBPA in wastewater has successfully been demonstrated to occur through anaerobic digestion (AD), although the involved microorganisms and the conditions favouring the conversion remains unclear. In this study, it was observed that bioconversion of TBBPA did not occur during the hydrolytic stage of the AD, but during the strictly fermentative stage. Bioconversion occurred in hydrolytic-acidogenic as well as in strictly acidogenic continuous bioreactors. This indicates that the microorganisms that degrade TBBPA benefit from the electron flux taking place during glycolysis and further transformations into short-chain fatty acids. The degradation kinetics of TBBPA was inversely proportional to the complexity of the wastewater as the apparent kinetics constants were 2.11, 1.86, and 0.52 h-1·gVSS-1 for glucose, starch, and domestic sewage as carbon source, respectively. Additionally, the micropollutant loading rate relative to the overall organic loading rate is of major importance during the investigation of cometabolic transformations. The long-term exposure to TBBPA at environmentally realistic concentrations did not cause any major changes in the microbiome composition. Multivariate statistical analysis of the evolvement of the microbiome throughout the incubation suggested that Enterobacter spp. and Clostridium spp. are the key players in TBBPA degradation. Finally, a batch enrichment was conducted, which showed that concentrations of 0.5 mg·L-1 or higher are detrimental to Clostridium spp., even though these organisms are putative TBBPA degraders. The Clostridium genus was outcompeted by the Enterobacter and Klebsiella genera, hereby highlighting the effect of unrealistic concentrations frequently used in culture-dependent studies on the microbial community composition.


Subject(s)
Flame Retardants , Microbiota , Polybrominated Biphenyls , Biodegradation, Environmental
8.
Chemosphere ; 282: 130995, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34116313

ABSTRACT

This is the first study to bring evidence on the anaerobic biodegradation of TBBPA occurring during acidogenesis in domestic sewage at environmentally relevant concentrations by complex microbial communities. This was accomplished by continuously operating two anaerobic structured bed reactors (ASTBR) for over 100 days under acidogenic (Acidogenic Reactor, AR) and multistep methanogenic (Methanogenic Reactor, MR) conditions. In the AR, the temporal carbohydrates consumption and the acetic acid production were strongly correlated with TBBPA removal by the Pearson's test. The spatial concentration of TBBPA and carbohydrates along the MR and the kinetic degradation profiles corroborate the AR results. It is hypothesized that TBBPA biodegradation in the studied conditions occurs during acidogenesis via the cometabolism supported by non-specific enzymes and the metabolism (dehalorespiration) established by electrons donors such as H2, which are both produced during the macrocomponents breakdown in the early stages of the anaerobic digestion. The TBBPA mass balance showed that approximately 86.8 ± 0.05% and 97 ± 0.01% of the removed TBBPA was biodegraded in the AR and MR, respectively. Furthermore, TBBPA biodegradation went further than reductive debromination as total phenols were detected in the reactors' effluent.


Subject(s)
Polybrominated Biphenyls , Anaerobiosis , Biodegradation, Environmental , Sewage
9.
Environ Toxicol Chem ; 39(11): 2147-2157, 2020 11.
Article in English | MEDLINE | ID: mdl-32744726

ABSTRACT

An accurate and sensitive ultrasound-dispersive liquid-liquid microextraction technique followed by high-performance liquid chromatography separation coupled with electrospray ionization tandem mass spectrometry detection method to determine the presence of tetrabromobisphenol A (TBBPA) in complex environmental matrices is proposed. The miniaturized procedure was used to extract and quantify the analyte in domestic sewage, anaerobic sludge, and the aquatic test organism species Daphnia magna and Chironomus sancticaroli, which are standardized organisms for ecotoxicity bioassays. Limits of detection of 2 ng L-1 (domestic sewage), 2 ng g-1 (anaerobic sludge), 0.25 ng g-1 (D. magna), and 5 ng g-1 (C. tentans) were obtained. The presence of TBBPA was determined in domestic sewage and anaerobic sludge from an anaerobic batch bioreactor at a concentration of 0.2 ± 0.03 µg L-1 and 507 ± 79 ng g-1 , respectively. In D. magna and C. sancticaroli exposed to TBBPA in an acute toxicity bioassay, the micropollutant accumulated at 3.74 and 8.87 µg g-1 , respectively. The proposed method is a simple and cost-effective tool to determine TBBPA environmental occurrence and biomagnification potential compared with conventional extraction methods. To the best of our knowledge, this is the first liquid-liquid miniaturized extraction method to be applied to D. magna and C. sancticaroli. Environ Toxicol Chem 2020;39:2147-2157. © 2020 SETAC.


Subject(s)
Liquid Phase Microextraction/methods , Polybrominated Biphenyls/analysis , Tandem Mass Spectrometry/methods , Animals , Calibration , Chironomidae/metabolism , Chromatography, High Pressure Liquid , Daphnia/metabolism , Limit of Detection , Linear Models , Reference Standards , Solvents/chemistry , Spectrometry, Mass, Electrospray Ionization
10.
Sci Total Environ ; 679: 279-287, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31082601

ABSTRACT

Wastewaters generated in regions with water scarcity usually have high alkalinity, hardness, and elevated osmotic pressure (OP). Those characteristics should be considered when using biological systems for wastewater treatment along with the salinity heterogeneity. The interaction of different salts in mixed electrolyte solutions may cause inhibition, antagonism, synergism, and stimulation effects on microbial communities. Little is known about those effects on microbial activity and community structure of nitrifying and denitrifying bacteria. In this work, factorial design was used to evaluate the effects of NaCl, MgCl2 and CaCl2 on nitrifying and denitrifying communities. Antagonistic relationships between all salts were observed and they had greater magnitude on the nitrifying community. Stimulus and synernism were more evident on the nitrifying and denitrifying experiments, respectively. For this reason, the highest nitrification and denitrification specific rates were 1.1 × 10-1 mgN-NH4+ gSSV-1 min-1 for condition 01 and 6.5 × 10-2 mgN-NO3- gSSV-1 min-1 for control condition, respectively. The toxicity of the salts followed the order of NaCl > MgCl2 > CaCl2 and the antagonism between MgCl2 and NaCl was the most significant. PCR/DGGE analyses showed that Mg2+ may be the element that expresses the least influence in the differentiation of microbial structure even though it significantly affects the activity of the autotrophic microorganisms. The same behavior was observed for Ca2+ on denitrifying microorganism. In addition, microbial diversity and richness was not negatively affected by different salinities. Genetic sequencing suggested that the genus Aeromonas, Alishewanella, Azospirillum, Pseudoalteromonas, and Thioalkalivibrio were outstanding on ammonium and nitrate removal under saline conditions. The specific toxicity of each salt and the interactions among them are the major effects on microbial activity in biological wastewater treatments rather than the osmotic pressure caused by the final salinity.


Subject(s)
Bacteria/metabolism , Calcium Chloride/metabolism , Denitrification , Magnesium Chloride/metabolism , Nitrification , Sodium Chloride/metabolism , Cations/metabolism , Desert Climate , Microbiota , Wastewater/chemistry
11.
Bioresour Technol ; 288: 121529, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31136891

ABSTRACT

Simultaneous nitrification and denitrification (SND) was established under continuous aeration (6 mgO2 L-1) aiming at achieving a feasible and simple operational strategy for treating multi-electrolyte saline wastewaters. Two Structured Fixed-Bed Reactors (SFBR) were used to assess SND performance with (Saline Reactor, SR) and without (Control Reactor, CR) salinity interference. Salinity was gradually increased (from 1.7 to 9 atm) based on the composition of water supplied in arid regions of Brazil. At 1.7 atm, N-NH4+ oxidation and Total Nitrogen (TN) removal efficiencies of 95.9 ±â€¯2.8 and 65.76 ±â€¯7.5%, respectively, were obtained. At osmotic pressure (OP) of 9 atm, the system was severely affected by specific salt toxicity and OP. High chemical oxygen demand (COD) removal efficiency was achieved at all operational conditions (97.2 ±â€¯1.6 to 78.5 ±â€¯4.6%). Salinity did not affect microbial diversity, although it modified microbial structure. Halotolerant genera were identified (Prosthecobacter, Chlamydia, Microbacterium, and Paenibacillus).


Subject(s)
Denitrification , Nitrification , Bioreactors , Brazil , Electrolytes , Nitrogen , Wastewater
SELECTION OF CITATIONS
SEARCH DETAIL