Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 53
1.
Elife ; 122024 Feb 13.
Article En | MEDLINE | ID: mdl-38349818

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Haemophilus influenzae , N-Acetylneuraminic Acid , Haemophilus influenzae/metabolism , Cryoelectron Microscopy , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Membrane Transport Proteins/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism
2.
Biofactors ; 50(1): 4-5, 2024.
Article En | MEDLINE | ID: mdl-38351879
3.
Science ; 379(6637): 1093-1094, 2023 03 17.
Article En | MEDLINE | ID: mdl-36927032

Structural analysis reveals how the decision to induce apoptotic cell death is regulated.


Apoptosis , Inhibitor of Apoptosis Proteins , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Caspases/metabolism , Enzyme Activation , Humans
4.
Nat Commun ; 14(1): 1120, 2023 02 27.
Article En | MEDLINE | ID: mdl-36849793

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.


Membrane Transport Proteins , N-Acetylneuraminic Acid , Biological Transport , Archaea , Adenosine Triphosphate
5.
Commun Biol ; 5(1): 1061, 2022 10 06.
Article En | MEDLINE | ID: mdl-36203093

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation. Notably, the HR for deletions in BRCA1 suggested an elevated breast cancer risk estimate (hazard ratio (HR) = 1.21), 95% confidence interval (95% CI = 1.09-1.35) compared with non-CNV pathogenic variants. In contrast, deletions overlapping SULT1A1 suggested a decreased breast cancer risk (HR = 0.73, 95% CI 0.59-0.91) in BRCA1 pathogenic variant carriers. Functional analyses of SULT1A1 showed that reduced mRNA expression in pathogenic BRCA1 variant cells was associated with reduced cellular proliferation and reduced DNA damage after treatment with DNA damaging agents. These data provide evidence that deleterious variants in BRCA1 plus SULT1A1 deletions contribute to variable breast cancer risk in BRCA1 carriers.


Breast Neoplasms , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , DNA Copy Number Variations , Female , Genetic Predisposition to Disease , Heterozygote , Humans , RNA, Messenger
6.
Structure ; 30(11): 1518-1529.e5, 2022 11 03.
Article En | MEDLINE | ID: mdl-36108635

Tribbles proteins (TRIB1-3) are pseudokinases that recruit substrates to the COP1 ubiquitin ligase. TRIB2 was the first Tribbles ortholog to be implicated as a myeloid leukemia oncogene, because it recruits the C/EBPα transcription factor for ubiquitination by COP1. Here we report identification of nanobodies that bind the TRIB2 pseudokinase domain with low nanomolar affinity. A crystal structure of the TRIB2-Nb4.103 complex identified the nanobody to bind the N-terminal lobe of TRIB2, enabling specific recognition of TRIB2 in an activated conformation that is similar to the C/EBPα-bound state of TRIB1. Characterization in solution revealed that Nb4.103 can stabilize a TRIB2 pseudokinase domain dimer in a face-to-face manner. Conversely, a distinct nanobody (Nb4.101) binds through a similar epitope but does not readily promote dimerization. In combination, this study identifies features of TRIB2 that could be exploited for the development of inhibitors and nanobody tools for future investigation of TRIB2 function.


Intracellular Signaling Peptides and Proteins , Single-Domain Antibodies , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/genetics , Single-Domain Antibodies/metabolism , Ubiquitin/metabolism , Ubiquitination
7.
Methods Enzymol ; 667: 37-58, 2022.
Article En | MEDLINE | ID: mdl-35525548

Tribbles proteins are pervasive pseudokinases in cellular signaling. They play a major role in the differentiation of myeloid cells, hepatocytes and adipocytes, and more widely in immune function, metabolism and cancer. Like many other pseudokinases, an inherent lack of catalytic activity has meant that a specialized cadre of techniques has been required to investigate Tribbles function. A prerequisite to most in vitro biochemistry has been robust methods for purifying useful quantities of Tribbles protein, which can sometimes exhibit non-optimal behavior upon recombinant expression. For instance, structural studies of the Tribbles family have largely focused on TRIB1, in part because of more readily available protein. Here we describe methods we have developed to routinely produce milligram quantities of TRIB1, and specific considerations when employing TRIB1 protein for various downstream analyses. Namely, we describe preparation and crystallization of TRIB1 for structural studies, and using fluorescence polarization and isothermal titration calorimetry to analyze interactions with TRIB1. We hope that applying these considerations can facilitate further understanding of TRIB1 function, specifically, and can be selectively applied to improve studies of other Tribbles proteins and pseudokinases more generally.


Cell Differentiation
8.
Nat Commun ; 13(1): 1181, 2022 03 04.
Article En | MEDLINE | ID: mdl-35246518

A large family of E3 ligases that contain both substrate recruitment and RING domains confer specificity within the ubiquitylation cascade. Regulation of RING E3s depends on modulating their ability to stabilise the RING bound E2~ubiquitin conjugate in the activated (or closed) conformation. Here we report the structure of the Ark2C RING bound to both a regulatory ubiquitin molecule and an activated E2~ubiquitin conjugate. The structure shows that the RING domain and non-covalently bound ubiquitin molecule together make contacts that stabilise the activated conformation of the conjugate, revealing why ubiquitin is a key regulator of Ark2C activity. We also identify a charged loop N-terminal to the RING domain that enhances activity by interacting with both the regulatory ubiquitin and ubiquitin conjugated to the E2. In addition, the structure suggests how Lys48-linked ubiquitin chains might be assembled by Ark2C and UbcH5b. Together this study identifies features common to RING E3s, as well elements that are unique to Ark2C and related E3s, which enhance assembly of ubiquitin chains.


Ubiquitin-Conjugating Enzymes , Ubiquitin , Crystallography, X-Ray , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
9.
J Mol Biol ; 433(22): 167242, 2021 11 05.
Article En | MEDLINE | ID: mdl-34536441

Proper regulation of gene-expression relies on specific protein-protein interactions between a myriad of epigenetic regulators. As such, mutation of genes encoding epigenetic regulators often drive cancer and developmental disorders. Additional sex combs-like protein 1 (ASXL1) is a key example, where mutations frequently drive haematological cancers and can cause developmental disorders. It has been reported that nonsense mutations in ASXL1 promote an interaction with BRD4, another central epigenetic regulator. Here we provide a molecular mechanism for the BRD4-ASXL1 interaction, demonstrating that a motif near to common truncation breakpoints of ASXL1 contains an epitope that binds the ET domain within BRD4. Binding-studies show that this interaction is analogous to common ET-binding modes of BRD4-interactors, and that all three ASX-like protein orthologs (ASXL1-3) contain a functional ET domain-binding epitope. Crucially, we observe that BRD4-ASXL1 binding is markedly increased in the prevalent ASXL1Y591X truncation that maintains the BRD4-binding epitope, relative to full-length ASXL1 or truncated proteins that delete the epitope. Together, these results show that ASXL1 truncation enhances BRD4 recruitment to transcriptional complexes via its ET domain, which could misdirect regulatory activity of either BRD4 or ASXL1 and may inform potential therapeutic interventions.


Cell Cycle Proteins/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Amino Acid Motifs , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Epitopes , Frameshift Mutation , Gain of Function Mutation , HEK293 Cells , Humans , Multiprotein Complexes/metabolism , Protein Domains , Repressor Proteins/chemistry , Repressor Proteins/immunology , Reproducibility of Results , Transcription Factors/chemistry , Transcription Factors/genetics
10.
Front Mol Biosci ; 8: 699222, 2021.
Article En | MEDLINE | ID: mdl-34268334

Multicomponent transporters are used by bacteria to transport a wide range of nutrients. These systems use a substrate-binding protein to bind the nutrient with high affinity and then deliver it to a membrane-bound transporter for uptake. Nutrient uptake pathways are linked to the colonisation potential and pathogenicity of bacteria in humans and may be candidates for antimicrobial targeting. Here we review current research into bacterial multicomponent transport systems, with an emphasis on the interaction at the membrane, as well as new perspectives on the role of lipids and higher oligomers in these complex systems.

11.
Cancers (Basel) ; 13(12)2021 Jun 19.
Article En | MEDLINE | ID: mdl-34205360

The Tribbles family of proteins-comprising TRIB1, TRIB2, TRIB3 and more distantly related STK40-play important, but distinct, roles in differentiation, development and oncogenesis. Of the four Tribbles proteins, TRIB1 has been most well characterised structurally and plays roles in diverse cancer types. The most well-understood role of TRIB1 is in acute myeloid leukaemia, where it can regulate C/EBP transcription factors and kinase pathways. Structure-function studies have uncovered conformational switching of TRIB1 from an inactive to an active state when it binds to C/EBPα. This conformational switching is centred on the active site of TRIB1, which appears to be accessible to small-molecule inhibitors in spite of its inability to bind ATP. Beyond myeloid neoplasms, TRIB1 plays diverse roles in signalling pathways with well-established roles in tumour progression. Thus, TRIB1 can affect both development and chemoresistance in leukaemia; glioma; and breast, lung and prostate cancers. The pervasive roles of TRIB1 and other Tribbles proteins across breast, prostate, lung and other cancer types, combined with small-molecule susceptibility shown by mechanistic studies, suggests an exciting potential for Tribbles as direct targets of small molecules or biomarkers to predict treatment response.

12.
J Biol Chem ; 296: 100705, 2021.
Article En | MEDLINE | ID: mdl-33895136

Protein kinases are present in all domains of life and play diverse roles in cellular signaling. Whereas the impact of substrate phosphorylation by protein kinases has long been appreciated, it is becoming increasingly clear that protein kinases also play other, noncatalytic, functions. Here, we review recent developments in understanding the noncatalytic functions of protein kinases. Many noncatalytic activities are best exemplified by protein kinases that are devoid of enzymatic activity altogether-known as pseudokinases. These dead proteins illustrate that, beyond conventional notions of kinase function, catalytic activity can be dispensable for biological function. Through key examples we illustrate diverse mechanisms of noncatalytic kinase activity: as allosteric modulators; protein-based switches; scaffolds for complex assembly; and as competitive inhibitors in signaling pathways. In common, these noncatalytic mechanisms exploit the nature of the protein kinase fold as a versatile protein-protein interaction module. Many examples are also intrinsically linked to the ability of the protein kinase to switch between multiple states, a function shared with catalytic protein kinases. Finally, we consider the contemporary landscape of small molecules to modulate noncatalytic functions of protein kinases, which, although challenging, has significant potential given the scope of noncatalytic protein kinase function in health and disease.


Protein Kinases/metabolism , Signal Transduction , Allosteric Regulation , Catalysis
13.
J Mol Biol ; 433(8): 166844, 2021 04 16.
Article En | MEDLINE | ID: mdl-33539883

Tumour necrosis factor (TNF) receptor associated factor (TRAF) family members share a common domain architecture, but play non-redundant physiological roles in cell signalling. At the N terminus, most TRAFs have a RING domain, followed by a series of Zinc finger (ZF) domains. The RING domain of TRAF6 dimerizes, and the RING homodimer together with the first ZF assembles ubiquitin chains that form a platform which facilitates activation of downstream kinases. The RING dimer interface is conserved amongst TRAF proteins, suggesting that functional heterodimers could be possible. Here we report the structure of the TRAF5-TRAF6 RING heterodimer, which accounts for the stability of the heterodimer as well as its ability to assemble ubiquitin chains. We also show that the RING domain of TRAF6 heterodimerizes with TRAF3 and TRAF2, and demonstrate that the linker helix and first ZF of TRAF2 can cooperate with TRAF6 to promote chain assembly. Collectively our results suggest that TRAF RING homo- and hetero-dimers have the potential to bridge interaction of nearby TRAF trimers and modulate TRAF-mediated signalling.


Protein Binding , Ubiquitin/chemistry , Ubiquitination , Dimerization , Humans , Protein Interaction Domains and Motifs , Receptors, Tumor Necrosis Factor/chemistry , Receptors, Tumor Necrosis Factor/metabolism , Signal Transduction , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism , TNF Receptor-Associated Factor 5/metabolism , TNF Receptor-Associated Factor 6 , Ubiquitin/metabolism , Ubiquitin-Protein Ligases , Zinc Fingers
14.
Nat Biotechnol ; 39(4): 490-498, 2021 04.
Article En | MEDLINE | ID: mdl-33199876

Molecules that covalently bind macromolecular targets have found widespread applications as activity-based probes and as irreversibly binding drugs. However, the general reactivity of the electrophiles needed for covalent bond formation makes control of selectivity difficult. There is currently no rapid, unbiased screening method to identify new classes of covalent inhibitors from highly diverse pools of candidate molecules. Here we describe a phage display method to directly screen for ligands that bind to protein targets through covalent bond formation. This approach makes use of a reactive linker to form cyclic peptides on the phage surface while simultaneously introducing an electrophilic 'warhead' to covalently react with a nucleophile on the target. Using this approach, we identified cyclic peptides that irreversibly inhibited a cysteine protease and a serine hydrolase with nanomolar potency and exceptional specificity. This approach should enable rapid, unbiased screening to identify new classes of highly selective covalent inhibitors for diverse molecular targets.


Cell Surface Display Techniques/methods , Peptides, Cyclic/isolation & purification , Proteins/antagonists & inhibitors , Cysteine Proteinase Inhibitors/isolation & purification , Cysteine Proteinase Inhibitors/pharmacology , Hydrolases/antagonists & inhibitors , Models, Molecular , Molecular Dynamics Simulation , Molecular Structure , Peptides, Cyclic/pharmacology
15.
Front Public Health ; 9: 808751, 2021.
Article En | MEDLINE | ID: mdl-35141190

The rapid global rise of COVID-19 from late 2019 caught major manufacturers of RT-qPCR reagents by surprise and threw into sharp focus the heavy reliance of molecular diagnostic providers on a handful of reagent suppliers. In addition, lockdown and transport bans, necessarily imposed to contain disease spread, put pressure on global supply lines with freight volumes severely restricted. These issues were acutely felt in New Zealand, an island nation located at the end of most supply lines. This led New Zealand scientists to pose the hypothetical question: in a doomsday scenario where access to COVID-19 RT-qPCR reagents became unavailable, would New Zealand possess the expertise and infrastructure to make its own reagents onshore? In this work we describe a review of New Zealand's COVID-19 test requirements, bring together local experts and resources to make all reagents for the RT-qPCR process, and create a COVID-19 diagnostic assay referred to as HomeBrew (HB) RT-qPCR from onshore synthesized components. This one-step RT-qPCR assay was evaluated using clinical samples and shown to be comparable to a commercial COVID-19 assay. Through this work we show New Zealand has both the expertise and, with sufficient lead time and forward planning, infrastructure capacity to meet reagent supply challenges if they were ever to emerge.


COVID-19 Nucleic Acid Testing , COVID-19 , Humans , Indicators and Reagents/supply & distribution , SARS-CoV-2
16.
Int J Mol Sci ; 21(21)2020 Oct 22.
Article En | MEDLINE | ID: mdl-33105797

Post-translational modification of histone proteins plays a major role in histone-DNA packaging and ultimately gene expression. Attachment of ubiquitin to the C-terminal tail of histone H2A (H2AK119Ub in mammals) is particularly relevant to the repression of gene transcription, and is removed by the Polycomb Repressive-Deubiquitinase (PR-DUB) complex. Here, we outline recent advances in the understanding of PR-DUB regulation, which have come through structural studies of the Drosophila melanogaster PR-DUB, biochemical investigation of the human PR-DUB, and functional studies of proteins that associate with the PR-DUB. In humans, mutations in components of the PR-DUB frequently give rise to malignant mesothelioma, melanomas, and renal cell carcinoma, and increase disease risk from carcinogens. Diverse mechanisms may underlie disruption of the PR-DUB across this spectrum of disease. Comparing and contrasting the PR-DUB in mammals and Drosophila reiterates the importance of H2AK119Ub through evolution, provides clues as to how the PR-DUB is dysregulated in disease, and may enable new treatment approaches in cancers where the PR-DUB is disrupted.


Deubiquitinating Enzymes/metabolism , Polycomb-Group Proteins/metabolism , Animals , Deubiquitinating Enzymes/genetics , Drosophila Proteins/metabolism , Evolution, Molecular , Haploinsufficiency/genetics , Histones/metabolism , Humans , Mammals , Microtubule-Associated Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mutation , Neoplasms/genetics , Polycomb-Group Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitin Thiolesterase/metabolism
17.
ACS Infect Dis ; 6(10): 2771-2782, 2020 10 09.
Article En | MEDLINE | ID: mdl-32865965

Staphylococcus aureus is a prevalent bacterial pathogen in both community and hospital settings, and its treatment is made particularly difficult by resilience within biofilms. Within this niche, serine hydrolase enzymes play a key role in generating and maintaining the biofilm matrix. Activity-based profiling has previously identified a family of serine hydrolases, designated fluorophosphonate-binding hydrolases (Fph's), some of which contribute to the virulence of S. aureus in vivo. These 10 Fph proteins have limited annotation and have few, if any, characterized bacterial or mammalian homologues. This suggests unique hydrolase functions even within bacterial species. Here we report structures of one of the most abundant Fph family members, FphF. Our structures capture FphF alone, covalently bound to a substrate analogue and bound to small molecule inhibitors that occupy the hydrophobic substrate-binding pocket. In line with these findings, we show that FphF has promiscuous esterase activity toward hydrophobic lipid substrates. We present docking studies that characterize interactions of inhibitors and substrates within the active site environment, which can be extended to other Fph family members. Comparison of FphF to other esterases and the wider Fph protein family suggest that FphF forms a new esterase subfamily. Our data suggest that other Fph enzymes, including the virulence factor FphB, are likely to have more restricted substrate profiles than FphF. This work demonstrates a clear molecular rationale for the specificity of fluorophosphonate probes that target FphF and provides a structural template for the design of enhanced probes and inhibitors of the Fph family of serine hydrolases.


Staphylococcal Infections , Staphylococcus aureus , Animals , Hydrolases/genetics , Hydrolases/metabolism , Serine , Staphylococcus aureus/metabolism , Substrate Specificity
18.
Proc Natl Acad Sci U S A ; 117(35): 21308-21318, 2020 09 01.
Article En | MEDLINE | ID: mdl-32817551

The MEKK1 protein is a pivotal kinase activator of responses to cellular stress. Activation of MEKK1 can trigger various responses, including mitogen-activated protein (MAP) kinases, NF-κB signaling, or cell migration. Notably, MEKK1 activity is triggered by microtubule-targeting chemotherapies, among other stressors. Here we show that MEKK1 contains a previously unidentified tumor overexpressed gene (TOG) domain. The MEKK1 TOG domain binds to tubulin heterodimers-a canonical function of TOG domains-but is unusual in that it appears alone rather than as part of a multi-TOG array, and has structural features distinct from previously characterized TOG domains. MEKK1 TOG demonstrates a clear preference for binding curved tubulin heterodimers, which exist in soluble tubulin and at sites of microtubule polymerization and depolymerization. Mutations disrupting tubulin binding decrease microtubule density at the leading edge of polarized cells, suggesting that tubulin binding may play a role in MEKK1 activity at the cellular periphery. We also show that MEKK1 mutations at the tubulin-binding interface of the TOG domain recur in patient-derived tumor sequences, suggesting selective enrichment of tumor cells with disrupted MEKK1-microtubule association. Together, these findings provide a direct link between the MEKK1 protein and tubulin, which is likely to be relevant to cancer cell migration and response to microtubule-modulating therapies.


MAP Kinase Kinase Kinase 1/metabolism , Tubulin/metabolism , Humans , MAP Kinase Kinase Kinase 1/chemistry , MAP Kinase Kinase Kinase 1/genetics , MAP Kinase Kinase Kinase 1/ultrastructure , Neoplasms/genetics , Protein Domains
19.
ChemMedChem ; 15(13): 1128-1138, 2020 07 03.
Article En | MEDLINE | ID: mdl-32400116

Multivalent structures can provide multiple interactions at a target site and improve binding affinity. The multivalent presentation of the anti-tumour heptapeptide, SNTSESF, was investigated. This peptide's activity has been attributed to blockade of the PD-1 receptor-mediated signalling pathway. Two and four peptide units were conjugated to poly ethoxy ethyl glycinamide (PEE-G) scaffolds to prepare high-purity products. These conjugates and the peptide were examined in a mouse model implanted with GL261 tumours that indicated that presenting more than two copies of peptide SNTSESF on the dendritic scaffold does not increase anti-tumour activity per peptide. The fluorescent labelled peptide and most active multivalent peptide conjugate were therefore screened for their interaction with the human PD-L1 protein in a fluorescence polarisation assay. No indication of a specific SNTSESF peptide/PD-L1 interaction was observed. This finding was further supported by a molecular modelling binding study.


Glycine/analogs & derivatives , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Cell Line, Tumor , Dose-Response Relationship, Drug , Glycine/chemical synthesis , Glycine/chemistry , Glycine/pharmacology , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Programmed Cell Death 1 Receptor/metabolism , Structure-Activity Relationship
20.
Sci Signal ; 13(622)2020 03 10.
Article En | MEDLINE | ID: mdl-32156783

Apoptosis signal-regulating kinases (ASK1, ASK2, and ASK3) are activators of the p38 and c-Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways. ASK1-3 form oligomeric complexes known as ASK signalosomes that initiate signaling cascades in response to diverse stress stimuli. Here, we demonstrated that oligomerization of ASK proteins is driven by previously uncharacterized sterile-alpha motif (SAM) domains that reside at the carboxy-terminus of each ASK protein. SAM domains from ASK1-3 exhibited distinct behaviors, with the SAM domain of ASK1 forming unstable oligomers, that of ASK2 remaining predominantly monomeric, and that of ASK3 forming a stable oligomer even at a low concentration. In contrast to their behavior in isolation, the ASK1 and ASK2 SAM domains preferentially formed a stable heterocomplex. The crystal structure of the ASK3 SAM domain, small-angle x-ray scattering, and mutagenesis suggested that ASK3 oligomers and ASK1-ASK2 complexes formed discrete, quasi-helical rings through interactions between the mid-loop of one molecule and the end helix of another molecule. Preferential ASK1-ASK2 binding was consistent with mass spectrometry showing that full-length ASK1 formed hetero-oligomeric complexes incorporating large amounts of ASK2. Accordingly, disrupting the association between SAM domains impaired ASK activity in the context of electrophilic stress induced by 4-hydroxy-2-nonenal (HNE). These findings provide a structural template for how ASK proteins assemble foci that drive inflammatory signaling and reinforce the notion that strategies to target ASK proteins should consider the concerted actions of multiple ASK family members.


MAP Kinase Kinase Kinase 5/chemistry , MAP Kinase Kinase Kinases/chemistry , Multienzyme Complexes/chemistry , Protein Multimerization , HEK293 Cells , Humans , MAP Kinase Kinase Kinase 5/genetics , MAP Kinase Kinase Kinase 5/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Multienzyme Complexes/genetics , Multienzyme Complexes/metabolism , Protein Domains
...