Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Acta Neuropathol Commun ; 12(1): 31, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38389095

ABSTRACT

Pick's disease (PiD) is a subtype of the tauopathy form of frontotemporal lobar degeneration (FTLD-tau) characterized by intraneuronal 3R-tau inclusions. PiD can underly various dementia syndromes, including primary progressive aphasia (PPA), characterized by an isolated and progressive impairment of language and left-predominant atrophy, and behavioral variant frontotemporal dementia (bvFTD), characterized by progressive dysfunction in personality and bilateral frontotemporal atrophy. In this study, we investigated the neocortical and hippocampal distributions of Pick bodies in bvFTD and PPA to establish clinicopathologic concordance between PiD and the salience of the aphasic versus behavioral phenotype. Eighteen right-handed cases with PiD as the primary pathologic diagnosis were identified from the Northwestern University Alzheimer's Disease Research Center brain bank (bvFTD, N = 9; PPA, N = 9). Paraffin-embedded sections were stained immunohistochemically with AT8 to visualize Pick bodies, and unbiased stereological analysis was performed in up to six regions bilaterally [middle frontal gyrus (MFG), superior temporal gyrus (STG), inferior parietal lobule (IPL), anterior temporal lobe (ATL), dentate gyrus (DG) and CA1 of the hippocampus], and unilateral occipital cortex (OCC). In bvFTD, peak neocortical densities of Pick bodies were in the MFG, while the ATL was the most affected in PPA. Both the IPL and STG had greater leftward pathology in PPA, with the latter reaching significance (p < 0.01). In bvFTD, Pick body densities were significantly right-asymmetric in the STG (p < 0.05). Hippocampal burden was not clinicopathologically concordant, as both bvFTD and PPA cases demonstrated significant hippocampal pathology compared to neocortical densities (p < 0.0001). Inclusion-to-neuron analyses in a subset of PPA cases confirmed that neurons in the DG are disproportionately burdened with inclusions compared to neocortical areas. Overall, stereological quantitation suggests that the distribution of neocortical Pick body pathology is concordant with salient clinical features unique to PPA vs. bvFTD while raising intriguing questions about the selective vulnerability of the hippocampus to 3R-tauopathies.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Pick Disease of the Brain , Tauopathies , Humans , Pick Disease of the Brain/pathology , Frontotemporal Dementia/pathology , Alzheimer Disease/pathology , Brain/pathology , Frontotemporal Lobar Degeneration/pathology , Atrophy/pathology , Tauopathies/pathology
2.
Ann Neurol ; 94(6): 1036-1047, 2023 12.
Article in English | MEDLINE | ID: mdl-37592884

ABSTRACT

OBJECTIVE: Age-related dementia syndromes are often not related to a single pathophysiological process, leading to multiple neuropathologies found at autopsy. An amnestic dementia syndrome can be associated with Alzheimer's disease (AD) with comorbid transactive response DNA-binding protein 43 (TDP-43) pathology (AD/TDP). Here, we investigated neuronal integrity and pathological burden of TDP-43 and tau, along the well-charted trisynaptic hippocampal circuit (dentate gyrus [DG], CA3, and CA1) in participants with amnestic dementia due to AD/TDP, amnestic dementia due to AD alone, or non-amnestic dementia due to TDP-43 proteinopathy associated with frontotemporal lobar degeneration (FTLD-TDP). METHODS: A total of 48 extensively characterized cases (14 AD, 16 AD/TDP, 18 FTLD-TDP) were analyzed using digital HALO software (Indica Labs, Albuquerque, NM, USA) to quantify pathological burden and neuronal loss. RESULTS: In AD/TDP and FTLD-TDP, TDP-43 immunoreactivity was greatest in the DG. Tau immunoreactivity was significantly greater in DG and CA3 in AD/TDP compared with pure AD. All clinical groups showed the highest amounts of neurons in DG, followed by CA3, then CA1. The AD and AD/TDP groups showed lower neuronal counts compared with the FTLD-TDP group across all hippocampal subregions consistent with the salience of the amnestic phenotype. INTERPRETATION: We conclude that AD/TDP can be distinguished from AD and FTLD-TDP based on differential regional distributions of hippocampal tau and TDP-43. Findings suggest that tau aggregation in AD/TDP might be enhanced by TDP-43. ANN NEUROL 2023;94:1036-1047.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , Humans , Alzheimer Disease/pathology , Frontotemporal Dementia/pathology , Frontotemporal Lobar Degeneration/pathology , Hippocampus/pathology , DNA-Binding Proteins/metabolism , tau Proteins/metabolism
3.
Front Aging Neurosci ; 15: 1164581, 2023.
Article in English | MEDLINE | ID: mdl-37358954

ABSTRACT

Frontotemporal lobar degeneration (FTLD) with tau pathology (FTLD-tau) commonly causes dementia syndromes that include primary progressive aphasia (PPA) and behavioral variant frontotemporal dementia (bvFTD). Cognitive decline in PPA and bvFTD is often accompanied by debilitating neuropsychiatric symptoms. In 44 participants with PPA or bvFTD due to autopsy-confirmed FTLD-tau, we characterized neuropsychiatric symptoms at early and late disease stages and determined whether the presence of certain symptoms predicted a specific underlying FTLD-tauopathy. Participants completed annual research visits at the Northwestern University Alzheimer's Disease Research Center. All participants had an initial Global Clinical Dementia Rating (CDR) Scale score ≤ 2, and neuropsychiatric symptoms were evaluated via the Neuropsychiatric Inventory-Questionnaire (NPI-Q). We assessed the frequency of neuropsychiatric symptoms across all participants at their initial and final visits and performed logistic regression to determine whether symptoms predicted a specific FTLD-tau pathologic diagnosis. Across the FTLD-tau cohort, irritability and apathy were most frequently endorsed at initial and final visits, respectively, whereas psychosis was highly uncommon at both timepoints. Irritability at initial visit predicted greater odds of a 4-repeat compared to a 3-repeat tauopathy (OR = 3.95, 95% CI = 1.10-15.83, p < 0.05). Initial sleep disturbance predicted greater odds of progressive supranuclear palsy (PSP) compared to other FTLD-tau subtypes (OR = 10.68, 95% CI = 2.05-72.40, p < 0.01). Appetite disturbance at final evaluation predicted lower odds of PSP (OR = 0.15, 95% CI = 0.02-0.74, p < 0.05). Our findings suggest that characterization of neuropsychiatric symptoms can aid in the prediction of underlying FTLD-tauopathies. Given considerable pathologic heterogeneity underlying dementias, neuropsychiatric symptoms may be useful for differential diagnosis and treatment planning.

4.
J Comp Neurol ; 531(18): 2109-2120, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37376715

ABSTRACT

Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.


Subject(s)
Alzheimer Disease , White Matter , Animals , Humans , White Matter/metabolism , Acetylcholinesterase/metabolism , NADP/metabolism , Calbindins/metabolism , Neurons/metabolism , Calbindin 2/metabolism , NADPH Dehydrogenase/metabolism , Alzheimer Disease/pathology , S100 Calcium Binding Protein G/metabolism
5.
J Alzheimers Dis ; 89(2): 633-640, 2022.
Article in English | MEDLINE | ID: mdl-35938247

ABSTRACT

BACKGROUND: Studies have demonstrated that both tau and cardiovascular risk are associated with cognitive decline, but the possible synergistic effects of these pathologic markers remain unclear. OBJECTIVE: To explore the interaction of AD biomarkers with a specific vascular risk marker (pulse pressure) on longitudinal cognition. METHODS: Participants included 139 older adults from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Biomarkers of tau, amyloid-ß (Aß), and vascular risk (pulse pressure) were assessed. Neuropsychological assessment provided memory, language, and executive function domain composite scores at baseline and 1-year follow-up. Multiple linear regression examined interactive effects of pulse pressure with tau PET independent of Aß PET and Aß PET independent of tau PET on baseline and 1-year cognitive outcomes. RESULTS: The interaction between pulse pressure and tau PET significantly predicted 1-year memory performance such that the combined effect of high pulse pressure and high tau PET levels was associated with lower memory at follow-up but not at baseline. In contrast, Aß PET did not significantly interact with pulse pressure to predict baseline or 1-year outcomes in any cognitive domain. Main effects revealed a significant effect of tau PET on memory, and no significant effects of Aß PET or pulse pressure on any cognitive domain. CONCLUSION: Results indicate that tau and an indirect marker of arterial stiffening (pulse pressure) may synergistically contribute to memory decline, whereas Aß may have a lesser role in predicting cognitive progression. Tau and vascular pathology (particularly in combination) may represent valuable targets for interventions intended to slow cognitive decline.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Aged , Alzheimer Disease/psychology , Amyloid beta-Peptides , Biomarkers , Blood Pressure , Cognition , Cognitive Dysfunction/complications , Cognitive Dysfunction/diagnostic imaging , Humans , Positron-Emission Tomography/methods , tau Proteins
SELECTION OF CITATIONS
SEARCH DETAIL