Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Nat Neurosci ; 27(5): 836-845, 2024 May.
Article in English | MEDLINE | ID: mdl-38528201

ABSTRACT

Exposure to environmental chemicals can impair neurodevelopment, and oligodendrocytes may be particularly vulnerable, as their development extends from gestation into adulthood. However, few environmental chemicals have been assessed for potential risks to oligodendrocytes. Here, using a high-throughput developmental screen in cultured cells, we identified environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents and personal care products, were potently and selectively cytotoxic to developing oligodendrocytes, whereas organophosphate flame retardants, commonly found in household items such as furniture and electronics, prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired oligodendrocyte development postnatally in mice and in a human 3D organoid model of prenatal cortical development. Analysis of epidemiological data showed that adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our screen. This work identifies toxicological vulnerabilities for oligodendrocyte development and highlights the need for deeper scrutiny of these compounds' impacts on human health.


Subject(s)
Oligodendroglia , Oligodendroglia/drug effects , Animals , Mice , Humans , Flame Retardants/toxicity , Female , Cells, Cultured , Cell Differentiation/drug effects , Mice, Inbred C57BL , Environmental Pollutants/toxicity
2.
bioRxiv ; 2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36798415

ABSTRACT

Exposure to environmental chemicals can impair neurodevelopment1-4. Oligodendrocytes that wrap around axons to boost neurotransmission may be particularly vulnerable to chemical toxicity as they develop throughout fetal development and into adulthood5,6. However, few environmental chemicals have been assessed for potential risks to oligodendrocyte development. Here, we utilized a high-throughput developmental screen and human cortical brain organoids, which revealed environmental chemicals in two classes that disrupt oligodendrocyte development through distinct mechanisms. Quaternary compounds, ubiquitous in disinfecting agents, hair conditioners, and fabric softeners, were potently and selectively cytotoxic to developing oligodendrocytes through activation of the integrated stress response. Organophosphate flame retardants, commonly found in household items such as furniture and electronics, were non-cytotoxic but prematurely arrested oligodendrocyte maturation. Chemicals from each class impaired human oligodendrocyte development in a 3D organoid model of prenatal cortical development. In analysis of epidemiological data from the CDC's National Health and Nutrition Examination Survey, adverse neurodevelopmental outcomes were associated with childhood exposure to the top organophosphate flame retardant identified by our oligodendrocyte toxicity platform. Collectively, our work identifies toxicological vulnerabilities specific to oligodendrocyte development and highlights common household chemicals with high exposure risk to children that warrant deeper scrutiny for their impact on human health.

3.
Cell Stem Cell ; 28(2): 257-272.e11, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33091368

ABSTRACT

Mammalian cells respond to insufficient oxygen through transcriptional regulators called hypoxia-inducible factors (HIFs). Although transiently protective, prolonged HIF activity drives distinct pathological responses in different tissues. Using a model of chronic HIF1a accumulation in pluripotent-stem-cell-derived oligodendrocyte progenitors (OPCs), we demonstrate that HIF1a activates non-canonical targets to impair generation of oligodendrocytes from OPCs. HIF1a activated a unique set of genes in OPCs through interaction with the OPC-specific transcription factor OLIG2. Non-canonical targets, including Ascl2 and Dlx3, were sufficient to block differentiation through suppression of the oligodendrocyte regulator Sox10. Chemical screening revealed that inhibition of MEK/ERK signaling overcame the HIF1a-mediated block in oligodendrocyte generation by restoring Sox10 expression without affecting canonical HIF1a activity. MEK/ERK inhibition also drove oligodendrocyte formation in hypoxic regions of human oligocortical spheroids. This work defines mechanisms by which HIF1a impairs oligodendrocyte formation and establishes that cell-type-specific HIF1a targets perturb cell function in response to low oxygen.


Subject(s)
Oligodendrocyte Precursor Cells , Pluripotent Stem Cells , Animals , Basic Helix-Loop-Helix Transcription Factors , Cell Differentiation , Cells, Cultured , Humans , Hypoxia-Inducible Factor 1, alpha Subunit , Oligodendroglia
4.
Nature ; 585(7825): 397-403, 2020 09.
Article in English | MEDLINE | ID: mdl-32610343

ABSTRACT

Mutations in PLP1, the gene that encodes proteolipid protein (PLP), result in failure of myelination and neurological dysfunction in the X-chromosome-linked leukodystrophy Pelizaeus-Merzbacher disease (PMD)1,2. Most PLP1 mutations, including point mutations and supernumerary copy variants, lead to severe and fatal disease. Patients who lack PLP1 expression, and Plp1-null mice, can display comparatively mild phenotypes, suggesting that PLP1 suppression might provide a general therapeutic strategy for PMD1,3-5. Here we show, using CRISPR-Cas9 to suppress Plp1 expression in the jimpy (Plp1jp) point-mutation mouse model of severe PMD, increased myelination and restored nerve conduction velocity, motor function and lifespan of the mice to wild-type levels. To evaluate the translational potential of this strategy, we identified antisense oligonucleotides that stably decrease the levels of Plp1 mRNA and PLP protein throughout the neuraxis in vivo. Administration of a single dose of Plp1-targeting antisense oligonucleotides in postnatal jimpy mice fully restored oligodendrocyte numbers, increased myelination, improved motor performance, normalized respiratory function and extended lifespan up to an eight-month end point. These results suggest that PLP1 suppression could be developed as a treatment for PMD in humans. More broadly, we demonstrate that oligonucleotide-based therapeutic agents can be delivered to oligodendrocytes in vivo to modulate neurological function and lifespan, establishing a new pharmaceutical modality for myelin disorders.


Subject(s)
Disease Models, Animal , Myelin Proteolipid Protein/deficiency , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/therapy , Animals , CRISPR-Cas Systems , Female , Gene Editing , Hypoxia/metabolism , Male , Mice , Mice, Mutant Strains , Motor Activity/genetics , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Oligonucleotides, Antisense/administration & dosage , Oligonucleotides, Antisense/genetics , Pelizaeus-Merzbacher Disease/metabolism , Point Mutation , Respiratory Function Tests , Survival Analysis
5.
Cell ; 181(2): 382-395.e21, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32246942

ABSTRACT

Multiple sclerosis (MS) is an autoimmune disease characterized by attack on oligodendrocytes within the central nervous system (CNS). Despite widespread use of immunomodulatory therapies, patients may still face progressive disability because of failure of myelin regeneration and loss of neurons, suggesting additional cellular pathologies. Here, we describe a general approach for identifying specific cell types in which a disease allele exerts a pathogenic effect. Applying this approach to MS risk loci, we pinpoint likely pathogenic cell types for 70%. In addition to T cell loci, we unexpectedly identified myeloid- and CNS-specific risk loci, including two sites that dysregulate transcriptional pause release in oligodendrocytes. Functional studies demonstrated inhibition of transcriptional elongation is a dominant pathway blocking oligodendrocyte maturation. Furthermore, pause release factors are frequently dysregulated in MS brain tissue. These data implicate cell-intrinsic aberrations outside of the immune system and suggest new avenues for therapeutic development. VIDEO ABSTRACT.


Subject(s)
Cell Communication/genetics , Disease/genetics , Oligodendroglia/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Humans , Multiple Sclerosis/genetics , Multiple Sclerosis/metabolism , Multiple Sclerosis/physiopathology , Myelin Sheath/metabolism , Neurons/metabolism , Oligodendroglia/physiology , Risk Factors
6.
Nat Commun ; 9(1): 3708, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213958

ABSTRACT

Oligodendrocyte dysfunction underlies many neurological disorders, but rapid assessment of mutation-specific effects in these cells has been impractical. To enable functional genetics in oligodendrocytes, here we report a highly efficient method for generating oligodendrocytes and their progenitors from mouse embryonic and induced pluripotent stem cells, independent of mouse strain or mutational status. We demonstrate that this approach, when combined with genome engineering, provides a powerful platform for the expeditious study of genotype-phenotype relationships in oligodendrocytes.


Subject(s)
Cell Lineage , Oligodendroglia/cytology , Pluripotent Stem Cells/cytology , Alleles , Animals , CRISPR-Cas Systems , Cell Differentiation/genetics , DNA Mutational Analysis , Genetic Association Studies , Genetic Engineering , Genotype , Induced Pluripotent Stem Cells , Lentivirus , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism
7.
Stem Cell Reports ; 11(3): 711-726, 2018 09 11.
Article in English | MEDLINE | ID: mdl-30146490

ABSTRACT

Pelizaeus-Merzbacher disease (PMD) is a fatal X-linked disorder caused by loss of myelinating oligodendrocytes and consequent hypomyelination. The underlying cellular and molecular dysfunctions are not fully defined, but therapeutic enhancement of oligodendrocyte survival could restore functional myelination in patients. Here we generated pure, scalable quantities of induced pluripotent stem cell-derived oligodendrocyte progenitor cells (OPCs) from a severe mouse model of PMD, Plp1jimpy. Temporal phenotypic and transcriptomic studies defined an early pathological window characterized by endoplasmic reticulum (ER) stress and cell death as OPCs exit their progenitor state. High-throughput phenotypic screening identified a compound, Ro 25-6981, which modulates the ER stress response and rescues mutant oligodendrocyte survival in jimpy, in vitro and in vivo, and in human PMD oligocortical spheroids. Surprisingly, increasing oligodendrocyte survival did not restore subsequent myelination, revealing a second pathological phase. Collectively, our work shows that PMD oligodendrocyte loss can be rescued pharmacologically and defines a need for multifactorial intervention to restore myelination.


Subject(s)
Oligodendrocyte Precursor Cells/pathology , Pelizaeus-Merzbacher Disease/pathology , Animals , Cell Survival , Cells, Cultured , Disease Models, Animal , Endoplasmic Reticulum Stress , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/pathology , Mice , Mutation , Myelin Sheath/genetics , Myelin Sheath/metabolism , Myelin Sheath/pathology , Oligodendrocyte Precursor Cells/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Oligodendroglia/pathology , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/metabolism , Transcriptome
8.
Nat Methods ; 15(9): 700-706, 2018 09.
Article in English | MEDLINE | ID: mdl-30046099

ABSTRACT

Cerebral organoids provide an accessible system for investigations of cellular composition, interactions, and organization but have lacked oligodendrocytes, the myelinating glia of the central nervous system. Here we reproducibly generated oligodendrocytes and myelin in 'oligocortical spheroids' derived from human pluripotent stem cells. Molecular features consistent with those of maturing oligodendrocytes and early myelin appeared by week 20 in culture, with further maturation and myelin compaction evident by week 30. Promyelinating drugs enhanced the rate and extent of oligodendrocyte generation and myelination, and spheroids generated from human subjects with a genetic myelin disorder recapitulated human disease phenotypes. Oligocortical spheroids provide a versatile platform for studies of myelination of the developing central nervous system and offer new opportunities for disease modeling and therapeutic development.


Subject(s)
Cerebral Cortex/cytology , Myelin Sheath/metabolism , Oligodendroglia/cytology , Spheroids, Cellular/cytology , Animals , Cell Differentiation , Humans , Oligodendroglia/metabolism , Pluripotent Stem Cells/cytology , Spheroids, Cellular/metabolism
9.
Nature ; 560(7718): 372-376, 2018 08.
Article in English | MEDLINE | ID: mdl-30046109

ABSTRACT

Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases1-3. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo4-10. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.


Subject(s)
Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Remyelination , Sterols/chemistry , Sterols/metabolism , 14-alpha Demethylase Inhibitors/pharmacology , Animals , Cholesterol/biosynthesis , HEK293 Cells , High-Throughput Screening Assays , Humans , Imidazoles/pharmacology , Male , Membrane Proteins/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Multiple Sclerosis , Oligodendroglia/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Remyelination/drug effects , Spheroids, Cellular/drug effects , Spheroids, Cellular/metabolism , Spinal Cord/drug effects , Spinal Cord/pathology , Steroid Isomerases/antagonists & inhibitors , Sterol 14-Demethylase/metabolism , Substrate Specificity
10.
Genesis ; 54(10): 542-549, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27618396

ABSTRACT

In this study, we generated a transgenic mouse line driving Cre and EGFP expression with two putative cis-regulatory modules (CRMs) (i.e., hs687 and hs678) upstream of the homeobox gene Gsx2 (formerly Gsh2), a critical gene for establishing lateral ganglionic eminence (LGE) identity. The combination of these two CRMs drives transgene expression within the endogenous Gsx2 expression domains along the anterior-posterior neuraxis. By crossing this transgenic line with the RosatdTomato (Ai14) reporter mouse line, we observed a unique recombination pattern in the lateral ventral telencephalon, namely the LGE and the dorsal half of the medial GE (MGE), but not in the septum. We found robust recombination in many cell types derived from these embryonic regions, including olfactory bulb and amygdala interneurons and striatal projection neurons from the LGE, as well as cortical interneurons from the MGE and caudal GE (CGE). In summary, this transgenic mouse line represents a new tool for genetic manipulation in the LGE/CGE and the dorsal half of MGE.


Subject(s)
Ganglion Cysts/genetics , Green Fluorescent Proteins/genetics , Homeodomain Proteins/genetics , Telencephalon/growth & development , Amygdala/growth & development , Animals , Ganglion Cysts/pathology , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/biosynthesis , Integrases/genetics , Mice , Mice, Transgenic , Neurons/metabolism , Neurons/pathology , Olfactory Bulb/growth & development , Telencephalon/metabolism
11.
Nature ; 522(7555): 216-20, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25896324

ABSTRACT

Multiple sclerosis involves an aberrant autoimmune response and progressive failure of remyelination in the central nervous system. Prevention of neural degeneration and subsequent disability requires remyelination through the generation of new oligodendrocytes, but current treatments exclusively target the immune system. Oligodendrocyte progenitor cells are stem cells in the central nervous system and the principal source of myelinating oligodendrocytes. These cells are abundant in demyelinated regions of patients with multiple sclerosis, yet fail to differentiate, thereby representing a cellular target for pharmacological intervention. To discover therapeutic compounds for enhancing myelination from endogenous oligodendrocyte progenitor cells, we screened a library of bioactive small molecules on mouse pluripotent epiblast stem-cell-derived oligodendrocyte progenitor cells. Here we show seven drugs function at nanomolar doses selectively to enhance the generation of mature oligodendrocytes from progenitor cells in vitro. Two drugs, miconazole and clobetasol, are effective in promoting precocious myelination in organotypic cerebellar slice cultures, and in vivo in early postnatal mouse pups. Systemic delivery of each of the two drugs significantly increases the number of new oligodendrocytes and enhances remyelination in a lysolecithin-induced mouse model of focal demyelination. Administering each of the two drugs at the peak of disease in an experimental autoimmune encephalomyelitis mouse model of chronic progressive multiple sclerosis results in striking reversal of disease severity. Immune response assays show that miconazole functions directly as a remyelinating drug with no effect on the immune system, whereas clobetasol is a potent immunosuppressant as well as a remyelinating agent. Mechanistic studies show that miconazole and clobetasol function in oligodendrocyte progenitor cells through mitogen-activated protein kinase and glucocorticoid receptor signalling, respectively. Furthermore, both drugs enhance the generation of human oligodendrocytes from human oligodendrocyte progenitor cells in vitro. Collectively, our results provide a rationale for testing miconazole and clobetasol, or structurally modified derivatives, to enhance remyelination in patients.


Subject(s)
Clobetasol/pharmacology , Miconazole/pharmacology , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Myelin Sheath/drug effects , Myelin Sheath/metabolism , Pluripotent Stem Cells/drug effects , Animals , Cell Differentiation/drug effects , Cerebellum/drug effects , Cerebellum/metabolism , Cerebellum/pathology , Demyelinating Diseases/drug therapy , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Germ Layers/drug effects , Germ Layers/metabolism , Germ Layers/pathology , Humans , Lysophosphatidylcholines , MAP Kinase Signaling System , Male , Mice , Mitogen-Activated Protein Kinases/metabolism , Multiple Sclerosis/pathology , Oligodendroglia/cytology , Oligodendroglia/drug effects , Oligodendroglia/metabolism , Phenotype , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Receptors, Glucocorticoid/metabolism , Regeneration/drug effects , Tissue Culture Techniques
12.
Cereb Cortex ; 24(6): 1409-21, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23307639

ABSTRACT

To gain new insights into the transcriptional regulation of cortical development, we examined the role of the transcription factor Sp8, which is downstream of Fgf8 signaling and known to promote rostral cortical development. We have used a binary transgenic system to express Sp8 throughout the mouse telencephalon in a temporally restricted manner. Our results show that misexpression of Sp8 throughout the telencephalon, at early but not late embryonic stages, results in cortical hypoplasia, which is accompanied by increased cell death, reduced proliferation, and precocious neuronal differentiation. Misexpression of Sp8 at early developmental stages represses COUP-TF1 expression, a negative effector of Fgf signaling and a key promoter of posterior cortical identity, while ablation of Sp8 has the opposite effect. In addition, transgenic misexpression of COUP-TF1 resulted in downregulation of Sp8, indicating a reciprocal cross-regulation between these 2 transcription factors. Although Sp8 has been suggested to induce and/or maintain Fgf8 expression in the embryonic telencephalon, neither Fgf8 nor Fgf15 was upregulated using our gain-of-function approach. However, misexpression of Sp8 greatly increased the expression of Fgf target molecules, suggesting enhanced Fgf signaling. Thus, we propose that Sp8 promotes rostral and dorsomedial cortical development by repressing COUP-TF1 and promoting Fgf signaling in pallial progenitors.


Subject(s)
COUP Transcription Factor I/metabolism , Cerebral Cortex/embryology , DNA-Binding Proteins/metabolism , Fibroblast Growth Factors/metabolism , Neural Stem Cells/physiology , Telencephalon/embryology , Transcription Factors/metabolism , Animals , Body Patterning/physiology , COUP Transcription Factor I/genetics , Cell Death/physiology , Cell Proliferation/physiology , Cerebral Cortex/physiology , DNA-Binding Proteins/genetics , Fibroblast Growth Factor 8/metabolism , Globus Pallidus/embryology , Globus Pallidus/physiology , Mice, Transgenic , Models, Neurological , Neurogenesis/physiology , Signal Transduction/physiology , Telencephalon/physiology , Transcription Factors/genetics
13.
J Neurosci ; 31(23): 8450-5, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21653849

ABSTRACT

Interneurons in the olfactory bulb (OB) represent a heterogeneous population, which are first produced at embryonic stages and persisting into adulthood. Using the BrdU birthdating method combined with immunostaining for several different neuronal markers, we provide the integrated temporal patterns of distinct mouse OB interneuron production from embryonic day 14 to postnatal day 365. We show that although the majority of OB interneuron subtypes continue to be generated throughout life, most subtypes show a similar "bell-like" temporal production pattern with a peak around birth. Tyrosine hydroxylase and calretinin-expressing interneurons are produced at a relatively low rate in the adult OB, while parvalbumin-expressing (PV+) interneuron production is confined to later embryonic and early postnatal stages. We also show that Dlx5/6-expressing progenitors contribute to PV+ interneurons in the OB. Interestingly, all PV+ interneurons in the external plexiform layer (EPL) express the transcription factor Sp8. Genetic ablation of Sp8 by cre/loxP-based recombination severely reduces the number of PV+ interneurons in the EPL of the OB. Our results suggest that Sp8 is required for the normal production of PV+ interneurons in the EPL of the OB. These data expand our understanding of the temporal and molecular regulation of OB interneuron neurogenesis.


Subject(s)
DNA-Binding Proteins/metabolism , Interneurons/metabolism , Olfactory Bulb/metabolism , Parvalbumins/metabolism , Transcription Factors/metabolism , Animals , Calbindin 2 , Cell Count , DNA-Binding Proteins/genetics , Immunohistochemistry , Mice , Mice, Transgenic , S100 Calcium Binding Protein G/metabolism , Transcription Factors/genetics , Tyrosine 3-Monooxygenase/metabolism
14.
Mol Vis ; 13: 57-65, 2007 Jan 24.
Article in English | MEDLINE | ID: mdl-17277739

ABSTRACT

PURPOSE: To elucidate the early cellular events that take place during induction of retina regeneration in the embryonic chick, focusing on the relationship between fibroblast growth factor (FGF) signaling and the regulation of Pax6 and Mitf. METHODS: The retina of embryonic day 4 (E4) chicks was removed and a heparin coated bead soaked in fibroblast growth factor 2 (FGF2) was placed into the optic cup. The pharmacological inhibitor PD173074 was used to inhibit FGF receptors, PD98059 was used to inhibit MAP kinase-kinase/extracellular signal-regulated kinase (MEK/Erk) signaling. Retroviral constructs for paired box 6 (Pax6), MEK, and microphthalmia (Mitf) were also used in overexpression studies. Immunohistochemistry was used to examine pErk, Pax6, Mitf, and melanosomal matrix protein 115 (MMP115) immunoreactivity and bromodeoxyuridine (BrdU) incorporation at different time points after removing the retina. RESULTS: The embryonic chick has the ability to regenerate a new retina by the process of transdifferentiation of the retinal pigment epithelium (RPE). We observed that during the induction of transdifferentiation, downregulation of Mitf was not sufficient to induce transdifferentiation at E4 and that FGF2 was required to drive Pax6 protein expression and cell proliferation, both of which are necessary for transdifferentiation. Furthermore, we show that FGF2 works through the FGFR/MEK/Erk signaling cascade to increase Pax6 expression and proliferation. Ectopic Mitf expression was able to inhibit transdifferentiation by acting downstream of FGFR/MEK/Erk signaling, likely by inhibiting the increase in Pax6 protein in the RPE. CONCLUSIONS: FGF2 stimulates Pax6 expression during induction of transdifferentiation of the RPE through FGFR/MEK/Erk signaling cascade. This Pax6 expression is accompanied by an increase in BrdU incorporation. In addition, we show that Mitf is spontaneously downregulated after removal of the retina even in the absence of FGF2. This Mitf downregulation is not accompanied by Pax6 upregulation, demonstrating that FGF2 stimulated Pax6 upregulation is required for transdifferentiation of the RPE. Furthermore, we show that ectopic Mitf expression is able to protect the RPE from FGF2 induced transdifferentiation by inhibiting Pax6 upregulation.


Subject(s)
Chick Embryo/physiology , Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Microphthalmia-Associated Transcription Factor/metabolism , Paired Box Transcription Factors/metabolism , Protein Serine-Threonine Kinases/metabolism , Regeneration/physiology , Repressor Proteins/metabolism , Retina/embryology , Animals , Avian Proteins/metabolism , Cell Proliferation , Chick Embryo/cytology , Chick Embryo/metabolism , Down-Regulation , Embryonic Development , Extracellular Signal-Regulated MAP Kinases/metabolism , Fibroblast Growth Factor 2/metabolism , Microphthalmia-Associated Transcription Factor/physiology , Mitogen-Activated Protein Kinase Kinases/metabolism , PAX6 Transcription Factor , Pigment Epithelium of Eye/embryology , Receptors, Fibroblast Growth Factor/metabolism , Retroviridae/physiology , Signal Transduction/physiology , Up-Regulation
15.
Proc Natl Acad Sci U S A ; 103(40): 14848-53, 2006 Oct 03.
Article in English | MEDLINE | ID: mdl-17003134

ABSTRACT

Pax-6 is a master regulator of eye development and is expressed in the dorsal and ventral iris during newt lens regeneration. We show that expression of Pax-6 during newt lens regeneration coincides with cell proliferation. By knocking down expression of Pax-6 via treatment with morpholinos, we found that proliferation of iris pigment epithelial cells was dramatically reduced both in vitro and in vivo, and, as a result, lens regeneration was significantly retarded. However, induction of dedifferentiation in the dorsal iris was not inhibited. Pax-6 knockdown early in lens regeneration resulted in inhibition of crystallin expression and retardation of lens fiber induction. Once crystallin expression and differentiation of lens fibers has ensued, however, loss of function of Pax-6 did not affect crystallin expression and lens fiber maintenance, even though the effects on proliferation persisted. These results conclusively show that Pax-6 is associated with distinct early events during lens regeneration, namely control of cell proliferation and subsequent lens fiber differentiation.


Subject(s)
Eye Proteins/metabolism , Homeodomain Proteins/metabolism , Lens, Crystalline/physiology , Paired Box Transcription Factors/metabolism , Regeneration , Repressor Proteins/metabolism , Animals , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Down-Regulation/drug effects , Down-Regulation/genetics , Epithelial Cells/cytology , Iris/cytology , Lens, Crystalline/drug effects , Oligonucleotides, Antisense/pharmacology , PAX6 Transcription Factor , Paired Box Transcription Factors/deficiency , Pigment Epithelium of Eye/cytology , Pigment Epithelium of Eye/drug effects , Regeneration/drug effects , Salamandridae
16.
J Neurogenet ; 19(2): 57-85, 2005.
Article in English | MEDLINE | ID: mdl-16024440

ABSTRACT

Most insertional mutagenesis screens of Drosophila performed to date have not used target chromosomes that have been checked for their suitability for phenotypic screens for viable phenotypes. To address this, we have generated a selection of stocks carrying either isogenized second chromosomes or isogenized third chromosomes, in a genetic background derived from a Canton-S wild-type strain. We have tested these stocks for a range of behavioral and other viable phenotypes. As expected, most lines are statistically indistinguishable from Canton-S in most phenotypes tested. The lines generated are now being used as target chromosomes in mutagenesis screens, and the characterization reported here will facilitate their use in screens of these lines for behavioral and other viable phenotypes.


Subject(s)
Drosophila melanogaster/genetics , Isochromosomes/genetics , Anesthetics/pharmacology , Animals , Behavior, Animal/drug effects , Benzaldehydes/pharmacology , Circadian Rhythm/genetics , Copulation , DNA Transposable Elements/genetics , Drosophila melanogaster/drug effects , Female , Genetic Testing/methods , Learning/drug effects , Locomotion/drug effects , Male , Mutation , Paralysis/genetics , Phenotype , Sexual Behavior, Animal , Wings, Animal/anatomy & histology
17.
Int J Dev Biol ; 48(8-9): 975-80, 2004.
Article in English | MEDLINE | ID: mdl-15558488

ABSTRACT

In this paper we describe the basic process of lens regeneration in adult newt and we pinpoint several issues in order to obtain a comprehensive understanding of this ability, which is restricted to only a few salamanders. The process is characterized by dynamic changes in the organization of the extracellular matrix in the eye, re-entering of the cell cycle and dedifferentiation of the dorsal iris pigment epithelial cells. The ability of the dorsal iris to contribute to lens regeneration is discussed in light of iris-specific gene expression as well as in relation to factors present in the eye.


Subject(s)
Extracellular Matrix/metabolism , Gene Expression Regulation, Developmental , Iris/physiology , Lens, Crystalline/physiology , Regeneration , Animals , Apoptosis , Cell Differentiation , Cell Proliferation , Microscopy, Electron, Scanning , Salamandridae , Time Factors
18.
Development ; 131(18): 4607-21, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15342484

ABSTRACT

The embryonic chick has the ability to regenerate its retina after it has been completely removed. Here, we provide a detailed characterization of retina regeneration in the embryonic chick at the cellular level. Retina regeneration can occur in two distinct manners. The first is via transdifferentiation, which is induced by members of the Fibroblast growth factor (Fgf) family. The second type of retinal regeneration occurs from the anterior margin of the eye, near the ciliary body (CB) and ciliary marginal zone (CMZ). We show that regeneration from the CB/CMZ is the result of proliferating stem/progenitor cells. This type of regeneration is also stimulated by Fgf2, but we show that it can be activated by Sonic hedgehog (Shh) overexpression when no ectopic Fgf2 is present. Shh-stimulated activation of CB/CMZ regeneration is inhibited by the Fgf receptor (Fgfr) antagonist, PD173074. This indicates that Shh-induced regeneration acts through the Fgf signaling pathway. In addition, we show that the hedgehog (Hh) pathway plays a role in maintenance of the retina pigmented epithelium (RPE), as ectopic Shh expression inhibits transdifferentiation and Hh inhibition increases the transdifferentiation domain. Ectopic Shh expression in the regenerating retina also results in a decrease in the number of ganglion cells present and an increase in apoptosis mostly in the presumptive ganglion cell layer (GCL). However, Hh inhibition increases the number of ganglion cells but does not have an effect on cell death. Taken together, our results suggest that the hedgehog pathway is an important modulator of retina regeneration.


Subject(s)
Regeneration , Retina/metabolism , Signal Transduction , Trans-Activators/metabolism , Animals , Cell Differentiation , Chick Embryo , Ciliary Body/cytology , Ciliary Body/drug effects , Ciliary Body/metabolism , Fibroblast Growth Factor 2/pharmacology , Gene Expression Regulation, Developmental , Hedgehog Proteins , Phenotype , Pigment Epithelium of Eye/cytology , Pigment Epithelium of Eye/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Retina/cytology , Retina/drug effects , Retina/growth & development , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/metabolism , Stem Cells/cytology , Stem Cells/drug effects , Stem Cells/metabolism , Trans-Activators/antagonists & inhibitors , Trans-Activators/genetics
19.
Dev Biol ; 267(2): 450-61, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-15013805

ABSTRACT

Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens.


Subject(s)
Gene Expression Regulation , Lens, Crystalline/physiology , Regeneration/physiology , Salamandridae/physiology , Trans-Activators/physiology , Animals , Bromodeoxyuridine , DNA Primers , Hedgehog Proteins , Immunohistochemistry , In Situ Hybridization , Membrane Proteins/metabolism , Patched Receptors , RNA/genetics , Receptors, Cell Surface , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/metabolism
20.
Wound Repair Regen ; 12(1): 24-9, 2004.
Article in English | MEDLINE | ID: mdl-14974961

ABSTRACT

Lens regeneration in adult newts is always initiated from the dorsal iris by transdifferentiation of the pigment epithelial cells. One of the most important early events should be the ability of pigment epithelial cells to dedifferentiate and re-enter the cell cycle. As a first step in an attempt to study this event, we have decided to examine the effects of a cyclin-dependent kinase-2 inhibitor on lens regeneration. At the appropriate concentration, this inhibitor completely abolished the ability of pigment epithelial cells to form a new lens, but it did not stop them from dedifferentiating and forming a small lens vesicle. The effects of this inhibitor seem to be mediated by its opposite effects on cell proliferation and apoptosis. The inhibitor significantly reduced cell proliferation and enhanced apoptosis of pigment epithelial cells both in vitro and in vivo and of the regenerating lens in vivo.


Subject(s)
Cyclin-Dependent Kinases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Lens, Crystalline/drug effects , Regeneration/drug effects , Animals , Apoptosis/drug effects , Cell Division/drug effects , Lens, Crystalline/physiology , Notophthalmus viridescens , Regeneration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...