Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 6067, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39025856

ABSTRACT

After recognizing its ligand lipopolysaccharide, Toll-like receptor 4 (TLR4) recruits adaptor proteins to the cell membrane, thereby initiating downstream signaling and triggering inflammation. Whether this recruitment of adaptor proteins is dependent solely on protein-protein interactions is unknown. Here, we report that the sphingolipid sphinganine physically interacts with the adaptor proteins MyD88 and TIRAP and promotes MyD88 recruitment in macrophages. Myeloid cell-specific deficiency in serine palmitoyltransferase long chain base subunit 2, which encodes the key enzyme catalyzing sphingolipid biosynthesis, decreases the membrane recruitment of MyD88 and inhibits inflammatory responses in in vitro bone marrow-derived macrophage and in vivo sepsis models. In a melanoma mouse model, serine palmitoyltransferase long chain base subunit 2 deficiency decreases anti-tumor myeloid cell responses and increases tumor growth. Therefore, sphinganine biosynthesis is required for the initiation of TLR4 signal transduction and serves as a checkpoint for macrophage pattern recognition in sepsis and melanoma mouse models.


Subject(s)
Macrophages , Melanoma , Myeloid Differentiation Factor 88 , Sepsis , Serine C-Palmitoyltransferase , Sphingosine , Toll-Like Receptor 4 , Animals , Toll-Like Receptor 4/metabolism , Sepsis/metabolism , Macrophages/metabolism , Myeloid Differentiation Factor 88/metabolism , Mice , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Serine C-Palmitoyltransferase/metabolism , Serine C-Palmitoyltransferase/genetics , Humans , Signal Transduction , Disease Models, Animal , Inflammation/metabolism , Receptors, Interleukin-1/metabolism , Receptors, Interleukin-1/genetics , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Mice, Inbred C57BL , Mice, Knockout , HEK293 Cells , Lipopolysaccharides
2.
Sci Immunol ; 9(94): eadg8817, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38640251

ABSTRACT

CD4+ regulatory T (Treg) cells accumulate in the tumor microenvironment (TME) and suppress the immune system. Whether and how metabolite availability in the TME influences Treg cell differentiation is not understood. Here, we measured 630 metabolites in the TME and found that serine and palmitic acid, substrates required for the synthesis of sphingolipids, were enriched. A serine-free diet or a deficiency in Sptlc2, the rate-limiting enzyme catalyzing sphingolipid synthesis, suppressed Treg cell accumulation and inhibited tumor growth. Sphinganine, an intermediate metabolite in sphingolipid synthesis, physically interacted with the transcription factor c-Fos. Sphinganine c-Fos interactions enhanced the genome-wide recruitment of c-Fos to regions near the transcription start sites of target genes including Pdcd1 (encoding PD-1), which promoted Pdcd1 transcription and increased inducible Treg cell differentiation in vitro in a PD-1-dependent manner. Thus, Sptlc2-mediated sphingolipid synthesis translates the extracellular information of metabolite availability into nuclear signals for Treg cell differentiation and limits antitumor immunity.


Subject(s)
Neoplasms , Sphingosine , T-Lymphocytes, Regulatory , Programmed Cell Death 1 Receptor/metabolism , Serine/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives , Tumor Microenvironment
3.
Nat Immunol ; 24(11): 1921-1932, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813964

ABSTRACT

The malate shuttle is traditionally understood to maintain NAD+/NADH balance between the cytosol and mitochondria. Whether the malate shuttle has additional functions is unclear. Here we show that chronic viral infections induce CD8+ T cell expression of GOT1, a central enzyme in the malate shuttle. Got1 deficiency decreased the NAD+/NADH ratio and limited antiviral CD8+ T cell responses to chronic infection; however, increasing the NAD+/NADH ratio did not restore T cell responses. Got1 deficiency reduced the production of the ammonia scavenger 2-ketoglutarate (2-KG) from glutaminolysis and led to a toxic accumulation of ammonia in CD8+ T cells. Supplementation with 2-KG assimilated and detoxified ammonia in Got1-deficient T cells and restored antiviral responses. These data indicate that the major function of the malate shuttle in CD8+ T cells is not to maintain the NAD+/NADH balance but rather to detoxify ammonia and enable sustainable ammonia-neutral glutamine catabolism in CD8+ T cells during chronic infection.


Subject(s)
Ketoglutaric Acids , NAD , Humans , Oxidation-Reduction , NAD/metabolism , Ketoglutaric Acids/metabolism , Ammonia , Malates/metabolism , CD8-Positive T-Lymphocytes/metabolism , Persistent Infection , Antiviral Agents
4.
Eur J Immunol ; 53(1): e2149400, 2023 01.
Article in English | MEDLINE | ID: mdl-36263815

ABSTRACT

While the immunosuppressive function of regulatory T (Treg) cells has been extensively studied, their immune-supportive roles have been less well investigated. Using a lymphocytic choriomeningitis virus (LCMV) Armstrong infection mouse model, we found that Treg cell-derived interleukin (IL)-15 is required for long-term maintenance of the KLRG1+ IL-7Rα- CD62L- terminal effector memory CD8+ T (tTEM) cell subset, but dispensable for the suppressive function of Treg cells themselves. In contrast, deletion of Il15 from other sources, including myeloid cells and muscles, did not affect the composition of the memory CD8+ T cell pool. Our findings identify Treg cells as an essential IL-15 source maintaining tTEM cells and suggest that Treg cells promote the diversity of immunological memory.


Subject(s)
Lymphocytic Choriomeningitis , T-Lymphocytes, Regulatory , Mice , Animals , Lymphocytic choriomeningitis virus , Immunologic Memory , Interleukin-15 , CD8-Positive T-Lymphocytes , Mice, Inbred C57BL , Interleukin-2
5.
Sci Immunol ; 7(71): eabh1873, 2022 05 27.
Article in English | MEDLINE | ID: mdl-35622904

ABSTRACT

T cells become functionally exhausted in tumors, limiting T cell-based immunotherapies. Although several transcription factors regulating the exhausted T (Tex) cell differentiation are known, comparatively little is known about the regulators of Tex cell survival. Here, we reported that the regulator of G protein signaling 16 (Rgs-16) suppressed Tex cell survival in tumors. By performing lineage tracing using reporter mice in which mCherry marked Rgs16-expressing cells, we identified that Rgs16+CD8+ tumor-infiltrating lymphocytes (TILs) were terminally differentiated, expressed low levels of T cell factor 1 (Tcf1), and underwent apoptosis as early as 6 days after the onset of Rgs16 expression. Rgs16 deficiency inhibited CD8+ T cell apoptosis and promoted antitumor effector functions of CD8+ T cells. Furthermore, Rgs16 deficiency synergized with programmed cell death protein 1 (PD-1) blockade to enhance antitumor CD8+ T cell responses. Proteomics revealed that Rgs16 interacted with the scaffold protein IQGAP1, suppressed the recruitment of Ras and B-Raf, and inhibited Erk1 activation. Rgs16 deficiency enhanced antitumor CD8+ TIL survival in an Erk1-dependent manner. Loss of function of Erk1 decreased antitumor functions of Rgs16-deficient CD8+ T cells. RGS16 mRNA expression levels in CD8+ TILs of patients with melanoma negatively correlated with genes associated with T cell stemness, such as SELL, TCF7, and IL7R, and predicted low responses to PD-1 blockade. This study uncovers Rgs16 as an inhibitor of Tex cell survival in tumors and has implications for improving T cell-based immunotherapies.


Subject(s)
CD8-Positive T-Lymphocytes , Programmed Cell Death 1 Receptor , RGS Proteins/immunology , Animals , Cell Differentiation , Humans , Immunotherapy , Lymphocytes, Tumor-Infiltrating , Mice
6.
Int J Cancer ; 151(5): 797-808, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35499751

ABSTRACT

Memory CD8+ T cells mature after antigen clearance and ultimately express CD8 protein at levels higher than those detected in effector CD8+ T cells. However, it is not clear whether engagement of CD8 in the absence of antigenic stimulation will result in the functional activation of T cells. Here, we found that CD8 antibody-mediated activation of memory CD8+ T cells triggered T cell receptor (TCR) downstream signaling, enhanced T cell-mediated cytotoxicity and promoted effector cytokine production in a glucose- and glutamine-dependent manner. Furthermore, pretreatment of memory CD8+ T cells with an agonistic anti-CD8 antibody enhanced their tumoricidal activity in vitro and in vivo. From these studies, we conclude that CD8 agonism activates glucose and glutamine metabolism in memory T cells and enhances the efficacy of memory T cell-based cancer immunotherapy.


Subject(s)
CD8-Positive T-Lymphocytes , Glutamine , Glucose/metabolism , Glutamine/metabolism , Humans , Immunologic Memory , Lymphocyte Activation , Memory T Cells , Receptors, Antigen, T-Cell , Signal Transduction
7.
Sci Adv ; 6(24): eaba3458, 2020 06.
Article in English | MEDLINE | ID: mdl-32582853

ABSTRACT

CD8+ T cells become functionally impaired or "exhausted" in chronic infections, accompanied by unwanted body weight reduction and muscle mass loss. Whether muscle regulates T cell exhaustion remains incompletely understood. We report that mouse skeletal muscle increased interleukin (IL)-15 production during LCMV clone 13 chronic infection. Muscle-specific ablation of Il15 enhanced the CD8+ T cell exhaustion phenotype. Muscle-derived IL-15 was required to maintain a population of CD8+CD103+ muscle-infiltrating lymphocytes (MILs). MILs resided in a less inflamed microenvironment, expressed more T cell factor 1 (Tcf1), and had higher proliferative potential than splenic T cells. MILs differentiated into functional effector T cells after reentering lymphoid tissues. Increasing muscle mass via muscle-specific inhibition of TGFß signaling enhanced IL-15 production and antiviral CD8+ T cell responses. We conclude that skeletal muscle antagonizes T cell exhaustion by protecting T cell proliferative potential from inflammation and replenishing the effector T cell progeny pool in lymphoid organs.

8.
Cell Rep ; 31(1): 107484, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32268106

ABSTRACT

T cell factor 1 (Tcf1) promotes the central memory CD8+ T (TCM) cell differentiation and stemness in lymphoid tissues after systemic infections. It remains unclear whether Tcf1 regulates the CD103high tissue-resident memory CD8+ T (TRM) cell formation in non-lymphoid tissues after mucosal infections. We find that Tcf1 is progressively decreased during lung TRM cell formation. Abrogation of transforming growth factor ß (TGF-ß) signaling is associated with a loss of CD103+ and reciprocal gain of Tcf1+ cells among TRM precursors in vivo. T-cell-specific ablation of Tcf7 enhances CD103 protein expression in TRM cells and precursors and increases TRM cell numbers after primary and secondary infections. Tcf1 directly binds to the Itgae (encoding CD103) locus and partly inhibits TGF-ß-induced CD103 expression. Our study suggests that memory T cell tissue residency and homeostatic proliferation are reciprocally regulated by Tcf1. Tcf1 may play either immunosupportive or immunosuppressive roles in CD8+ T cells, depending on systemic or mucosal infections.


Subject(s)
Antigens, CD/metabolism , Hepatocyte Nuclear Factor 1-alpha/genetics , Integrin alpha Chains/metabolism , Animals , Antigens, CD/genetics , Antigens, CD/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/physiology , Cell Differentiation/genetics , Female , Hepatocyte Nuclear Factor 1-alpha/metabolism , Immunologic Memory/genetics , Immunologic Memory/immunology , Integrin alpha Chains/genetics , Integrin alpha Chains/immunology , Lung/metabolism , Lymphocyte Activation/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Transforming Growth Factor beta/metabolism
9.
Int J Cancer ; 147(2): 307-316, 2020 07 15.
Article in English | MEDLINE | ID: mdl-31994718

ABSTRACT

In noncancerous tissues, neighboring cells coexist in metabolic harmony. This metabolic harmony is disrupted in cancerous tissues, often accompanied by genetic mutations. Tumor cells fundamentally change the metabolite profiles in the tumor microenvironment to favor their own growth. In this review, we will discuss several examples in which genetic mutations reprogram tumor cell metabolic pathways, leading to the consumption of essential nutrients in the tumor microenvironment, production of toxic byproducts, and suppression of antitumor immune cell metabolic fitness and tumor-killing function. Finally, we will briefly discuss how immune checkpoint blockade overcomes the metabolic suppression of tumor-infiltrating immune cells.


Subject(s)
Mutation , Neoplasms/metabolism , Oncogene Proteins/genetics , Cellular Reprogramming , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/metabolism , Metabolic Networks and Pathways , Neoplasms/genetics , Tumor Microenvironment
10.
Immunity ; 50(5): 1218-1231.e5, 2019 05 21.
Article in English | MEDLINE | ID: mdl-30952607

ABSTRACT

Patients with the neurological disorder HSAN-I suffer frequent infections, attributed to a lack of pain sensation and failure to seek care for minor injuries. Whether protective CD8+ T cells are affected in HSAN-I patients remains unknown. Here, we report that HSAN-I-associated mutations in serine palmitoyltransferase subunit SPTLC2 dampened human T cell responses. Antigen stimulation and inflammation induced SPTLC2 expression, and murine T-cell-specific ablation of Sptlc2 impaired antiviral-T-cell expansion and effector function. Sptlc2 deficiency reduced sphingolipid biosynthetic flux and led to prolonged activation of the mechanistic target of rapamycin complex 1 (mTORC1), endoplasmic reticulum (ER) stress, and CD8+ T cell death. Protective CD8+ T cell responses in HSAN-I patient PBMCs and Sptlc2-deficient mice were restored by supplementing with sphingolipids and pharmacologically inhibiting ER stress-induced cell death. Therefore, SPTLC2 underpins protective immunity by translating extracellular stimuli into intracellular anabolic signals and antagonizes ER stress to promote T cell metabolic fitness.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Hereditary Sensory and Autonomic Neuropathies/genetics , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Serine C-Palmitoyltransferase/genetics , Animals , Cell Proliferation , Cells, Cultured , Cytokines/biosynthesis , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/immunology , Female , Humans , Lymphocytic Choriomeningitis/virology , Male , Mice , Mice, Inbred C57BL , Middle Aged , Signal Transduction/immunology , Sphingolipids/biosynthesis
11.
Trends Endocrinol Metab ; 29(9): 595-597, 2018 09.
Article in English | MEDLINE | ID: mdl-29615303

ABSTRACT

T cells rapidly engage glycolysis upon activation. The signaling pathways through which T cell receptor (TCR) activation initiates glycolysis have been a mystery. A long-awaited answer has been provided by Menk et al., who show that pyruvate dehydrogenase kinase 1 (PDHK1) is in the center of signaling events linking TCR activation to glycolysis.


Subject(s)
Glycolysis , T-Lymphocytes , Citric Acid Cycle , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL