Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
ISME Commun ; 1(1): 4, 2021 Mar 25.
Article in English | MEDLINE | ID: mdl-36717596

ABSTRACT

Plant-derived phenolic acids are catabolized by soil microorganisms whose activity may enhance the decomposition of soil organic carbon (SOC). We characterized whether phenolic acid-degrading bacteria enhance SOC mineralization in forest soils when primed with 13C-labeled p-hydroxybenzoic acid (pHB). We further tested whether pHB-induced priming could explain differences in SOC content among mono-specific tree plantations in a 70-year-old common garden experiment. pHB addition primed significant losses of SOC (3-13 µmols C g-1 dry wt soil over 7 days) compared to glucose, which reduced mineralization (-3 to -8 µmols C g-1 dry wt soil over 7 days). The principal degraders of pHB were Paraburkholderia and Caballeronia in all plantations regardless of tree species or soil type, with one predominant phylotype (RP11ASV) enriched 23-fold following peak pHB respiration. We isolated and confirmed the phenolic degrading activity of a strain matching this phylotype (RP11T), which encoded numerous oxidative enzymes, including secretion signal-bearing laccase, Dyp-type peroxidase and aryl-alcohol oxidase. Increased relative abundance of RP11ASV corresponded with higher pHB respiration and expression of pHB monooxygenase (pobA), which was inversely proportional to SOC content among plantations. pobA expression proved a responsive measure of priming activity. We found that stimulating phenolic-acid degrading bacteria can prime decomposition and that this activity, corresponding with differences in tree species, is a potential mechanism in SOC cycling in forests. Overall, this study highlights the ecology and function of Paraburkholderia whose associations with plant roots and capacity to degrade phenolics suggest a role for specialized bacteria in the priming effect.

2.
ISME J ; 13(10): 2633-2638, 2019 10.
Article in English | MEDLINE | ID: mdl-31227816

ABSTRACT

Nitrous oxide (N2O) is a key climate change gas and nitrifying microbes living in terrestrial ecosystems contribute significantly to its formation. Many soils are acidic and global change will cause acidification of aquatic and terrestrial ecosystems, but the effect of decreasing pH on N2O formation by nitrifiers is poorly understood. Here, we used isotope-ratio mass spectrometry to investigate the effect of acidification on production of N2O by pure cultures of two ammonia-oxidizing archaea (AOA; Nitrosocosmicus oleophilus and Nitrosotenuis chungbukensis) and an ammonia-oxidizing bacterium (AOB; Nitrosomonas europaea). For all three strains acidification led to increased emission of N2O. However, changes of 15N site preference (SP) values within the N2O molecule (as indicators of pathways for N2O formation), caused by decreasing pH, were highly different between the tested AOA and AOB. While acidification decreased the SP value in the AOB strain, SP values increased to a maximum value of 29‰ in N. oleophilus. In addition, 15N-nitrite tracer experiments showed that acidification boosted nitrite transformation into N2O in all strains, but the incorporation rate was different for each ammonia oxidizer. Unexpectedly, for N. oleophilus more than 50% of the N2O produced at pH 5.5 had both nitrogen atoms from nitrite and we demonstrated that under these conditions expression of a putative cytochrome P450 NO reductase is strongly upregulated. Collectively, our results indicate that N. oleophilus might be able to enzymatically denitrify nitrite to N2O at low pH.


Subject(s)
Ammonia/metabolism , Archaea/enzymology , Archaea/metabolism , Archaeal Proteins/metabolism , Nitrous Oxide/metabolism , Archaea/classification , Archaea/genetics , Archaeal Proteins/genetics , Denitrification , Ecosystem , Hydrogen-Ion Concentration , Nitrites/metabolism , Nitrosomonas europaea , Oxidation-Reduction , Soil Microbiology
4.
Microbiome ; 7(1): 29, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30786927

ABSTRACT

BACKGROUND: Polynyas in the Southern Ocean are regions of intense primary production, mainly by Phaeocystis antarctica. Carbon fixed by phytoplankton in the water column is transferred to higher trophic levels, and finally, to the deep ocean. However, in the Amundsen Sea, most of this organic carbon does not reach the sediment but is degraded in the water column due to high bacterial heterotrophic activity. RESULTS: We reconstructed 12 key bacterial genomes from different phases of bloom and analyzed the expression of genes involved in organic carbon remineralization. A high correlation of gene expression between the peak and decline phases was observed in an individual genome bin-based pairwise comparison of gene expression. Polaribacter belonging to Bacteroidetes was found to be dominant in the peak phase, and its transcriptional activity was high (48.9% of the total mRNA reads). Two dominant Polaribacter bins had the potential to utilize major polymers in P. antarctica, chrysolaminarin and xylan, with a distinct set of glycosyl hydrolases. In the decline phase, Gammaproteobacteria (Ant4D3, SUP05, and SAR92), with the potential to utilize low molecular weight-dissolved organic matter (LMW-DOM) including compatible solutes, was increased. The versatility of Gammaproteobacteria may contribute to their abundance in organic carbon-rich polynya waters, while the SAR11 clade was found to be predominant in the sea ice-covered oligotrophic ocean. SAR92 clade showed transcriptional activity for utilization of both polysaccharides and LMW-DOM; this may account for their abundance both in the peak and decline phases. Ant4D3 clade was dominant in all phases of the polynya bloom, implicating the crucial roles of this clade in LMW-DOM remineralization in the Antarctic polynyas. CONCLUSIONS: Genomic reconstruction and in situ gene expression analyses revealed the unique metabolic potential of dominant bacteria of the Antarctic polynya at a finer taxonomic level. The information can be used to predict temporal community succession linked to the availability of substrates derived from the P. antarctica bloom. Global warming has resulted in compositional changes in phytoplankton from P. antarctica to diatoms, and thus, repeated parallel studies in various polynyas are required to predict global warming-related changes in carbon remineralization.


Subject(s)
Carbon/metabolism , Gene Expression Profiling/methods , Haptophyta/growth & development , Metagenomics/methods , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Diatoms/growth & development , Diatoms/metabolism , Diatoms/microbiology , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Gene Expression Regulation, Bacterial , Haptophyta/metabolism , Haptophyta/microbiology , Phylogeny , Phytoplankton/metabolism , Phytoplankton/microbiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Appl Environ Microbiol ; 83(4)2017 02 15.
Article in English | MEDLINE | ID: mdl-27913419

ABSTRACT

Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE: Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.


Subject(s)
Benzene/metabolism , Biodegradation, Environmental , Comamonadaceae/metabolism , Dioxygenases/metabolism , Water Pollutants, Chemical/metabolism , Coal Tar/chemistry , Comamonadaceae/genetics , Dioxygenases/genetics , Gammaproteobacteria/genetics , Gammaproteobacteria/metabolism , Groundwater/chemistry , Groundwater/microbiology , RNA, Ribosomal, 16S/genetics , Water Pollution
6.
Environ Microbiol Rep ; 8(6): 983-992, 2016 12.
Article in English | MEDLINE | ID: mdl-27700018

ABSTRACT

A wide diversity of ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota exists and plays a key role in the N cycle in a variety of habitats. In this study, we isolated and characterized an ammonia-oxidizing archaeon, strain MY3, from a coal tar-contaminated sediment. Phylogenetically, strain MY3 falls in clade 'Nitrosocosmicus' of the thaumarchaeotal group I.1b. The cells of strain MY3 are large 'walnut-like' cocci, divide by binary fission along a central cingulum, and form aggregates. Strain MY3 is mesophilic and neutrophilic. An assay of 13 C-bicarbonate incorporation into archaeal membrane lipids indicated that strain MY3 is capable of autotrophy. In contrast to some other AOA, TCA cycle intermediates, i.e. pruvate, oxaloacetate and α-ketoglutarate, did not affect the growth rates and yields of strain MY3. The attachment of cells of strain MY3 to XAD-7 hydrophobic beads and to the adsorbent vermiculite demonstrated the potential of strain MY3 to form biofilms. The cell surface was confirmed to be hydrophobic by the extraction of strain MY3 from an aqueous medium with p-xylene. Our finding of a strong potential for surface attachment by strain MY3 may reflect an adaptation to the selective pressures in hydrophobic terrestrial environments.


Subject(s)
Ammonia/metabolism , Archaea/isolation & purification , Archaea/metabolism , Environmental Microbiology , Archaea/classification , Archaea/cytology , Carbon/metabolism , Coal Tar , Environmental Pollutants , Oxidation-Reduction , Phylogeny
7.
Proc Natl Acad Sci U S A ; 113(28): 7888-93, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27339136

ABSTRACT

Ammonia-oxidizing archaea (AOA), that is, members of the Thaumarchaeota phylum, occur ubiquitously in the environment and are of major significance for global nitrogen cycling. However, controls on cell growth and organic carbon assimilation by AOA are poorly understood. We isolated an ammonia-oxidizing archaeon (designated strain DDS1) from seawater and used this organism to study the physiology of ammonia oxidation. These findings were confirmed using four additional Thaumarchaeota strains from both marine and terrestrial habitats. Ammonia oxidation by strain DDS1 was enhanced in coculture with other bacteria, as well as in artificial seawater media supplemented with α-keto acids (e.g., pyruvate, oxaloacetate). α-Keto acid-enhanced activity of AOA has previously been interpreted as evidence of mixotrophy. However, assays for heterotrophic growth indicated that incorporation of pyruvate into archaeal membrane lipids was negligible. Lipid carbon atoms were, instead, derived from dissolved inorganic carbon, indicating strict autotrophic growth. α-Keto acids spontaneously detoxify H2O2 via a nonenzymatic decarboxylation reaction, suggesting a role of α-keto acids as H2O2 scavengers. Indeed, agents that also scavenge H2O2, such as dimethylthiourea and catalase, replaced the α-keto acid requirement, enhancing growth of strain DDS1. In fact, in the absence of α-keto acids, strain DDS1 and other AOA isolates were shown to endogenously produce H2O2 (up to ∼4.5 µM), which was inhibitory to growth. Genomic analyses indicated catalase genes are largely absent in the AOA. Our results indicate that AOA broadly feature strict autotrophic nutrition and implicate H2O2 as an important factor determining the activity, evolution, and community ecology of AOA ecotypes.


Subject(s)
Ammonia/metabolism , Archaea/physiology , Hydrogen Peroxide/metabolism , Archaea/isolation & purification , Genome, Bacterial , Nitrification , Oxidation-Reduction , Peroxidase/metabolism
8.
J Biol Chem ; 291(22): 11928-38, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27036942

ABSTRACT

The glyoxylate shunt (GS) is a two-step metabolic pathway (isocitrate lyase, aceA; and malate synthase, glcB) that serves as an alternative to the tricarboxylic acid cycle. The GS bypasses the carbon dioxide-producing steps of the tricarboxylic acid cycle and is essential for acetate and fatty acid metabolism in bacteria. GS can be up-regulated under conditions of oxidative stress, antibiotic stress, and host infection, which implies that it plays important but poorly explored roles in stress defense and pathogenesis. In many bacterial species, including Pseudomonas aeruginosa, aceA and glcB are not in an operon, unlike in Escherichia coli In P. aeruginosa, we explored relationships between GS genes and growth, transcription profiles, and biofilm formation. Contrary to our expectations, deletion of aceA in P. aeruginosa improved cell growth under conditions of oxidative and antibiotic stress. Transcriptome data suggested that aceA mutants underwent a metabolic shift toward aerobic denitrification; this was supported by additional evidence, including up-regulation of denitrification-related genes, decreased oxygen consumption without lowering ATP yield, increased production of denitrification intermediates (NO and N2O), and increased cyanide resistance. The aceA mutants also produced a thicker exopolysaccharide layer; that is, a phenotype consistent with aerobic denitrification. A bioinformatic survey across known bacterial genomes showed that only microorganisms capable of aerobic metabolism possess the glyoxylate shunt. This trend is consistent with the hypothesis that the GS plays a previously unrecognized role in allowing bacteria to tolerate oxidative stress.


Subject(s)
Gene Expression Regulation, Bacterial , Glyoxylates/metabolism , Isocitrate Lyase/metabolism , Malate Synthase/metabolism , Oxidative Stress , Pseudomonas aeruginosa/metabolism , Acetates/metabolism , Biofilms/growth & development , Computational Biology , Genome, Bacterial , Isocitrate Lyase/genetics , Malate Synthase/genetics , Metabolic Networks and Pathways , Oxygen Consumption , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Transcriptome
9.
Sci Rep ; 6: 21796, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26887987

ABSTRACT

A genome-wide transcriptional analysis of Alteromonas naphthalenivorans SN2 was performed to investigate its ecophysiological behavior in contaminated tidal flats and seawater. The experimental design mimicked these habitats that either added naphthalene or pyruvate; tidal flat-naphthalene (TF-N), tidal flat-pyruvate (TF-P), seawater-naphthalene (SW-N), and seawater-pyruvate (SW-P). The transcriptional profiles clustered by habitat (TF-N/TF-P and SW-N/SW-P), rather than carbon source, suggesting that the former may exert a greater influence on genome-wide expression in strain SN2 than the latter. Metabolic mapping of cDNA reads from strain SN2 based on KEGG pathway showed that metabolic and regulatory genes associated with energy metabolism, translation, and cell motility were highly expressed in all four test conditions, probably highlighting the copiotrophic properties of strain SN2 as an opportunistic marine r-strategist. Differential gene expression analysis revealed that strain SN2 displayed specific cellular responses to environmental variables (tidal flat, seawater, naphthalene, and pyruvate) and exhibited certain ecological fitness traits -- its notable PAH degradation capability in seasonally cold tidal flat might be reflected in elevated expression of stress response and chaperone proteins, while fast growth in nitrogen-deficient and aerobic seawater probably correlated with high expression of glutamine synthetase, enzymes utilizing nitrite/nitrate, and those involved in the removal of reactive oxygen species.


Subject(s)
Alteromonas/genetics , Geologic Sediments/chemistry , Seawater/chemistry , Transcriptome , Water Pollutants, Chemical/pharmacology , Alteromonas/drug effects , Alteromonas/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial/drug effects , Genome, Bacterial , Geologic Sediments/microbiology , Metabolic Networks and Pathways , Naphthalenes/pharmacology , Pyruvic Acid/pharmacology , Seawater/microbiology , Water Microbiology
10.
Front Microbiol ; 6: 639, 2015.
Article in English | MEDLINE | ID: mdl-26161079

ABSTRACT

The communities and abundances of methanotrophs and methanogens, along with the oxygen, methane, and total organic carbon (TOC) concentrations, were investigated along a depth gradient in a flooded rice paddy. Broad patterns in vertical profiles of oxygen, methane, TOC, and microbial abundances were similar in the bulk and rhizosphere soils, though methane and TOC concentrations and 16S rRNA gene copies were clearly higher in the rhizosphere soil than in the bulk soil. Oxygen concentrations decreased sharply to below detection limits at 8 mm depth. Pyrosequencing of 16S rRNA genes showed that bacterial and archaeal communities varied according to the oxic, oxic-anoxic, and anoxic zones, indicating that oxygen is a determining factor for the distribution of bacterial and archaeal communities. Aerobic methanotrophs were maximally observed near the oxic-anoxic interface, while methane, TOC, and methanogens were highest in the rhizosphere soil at 30-200 mm depth, suggesting that methane is produced mainly from organic carbon derived from rice plants and is metabolized aerobically. The relative abundances of type I methanotrophs such as Methylococcus, Methylomonas, and Methylocaldum decreased more drastically than those of type II methanotrophs (such as Methylocystis and Methylosinus) with increasing depth. Methanosaeta and Methanoregula were predominant methanogens at all depths, and the relative abundances of Methanosaeta, Methanoregula, and Methanosphaerula, and GOM_Arc_I increased with increasing depth. Based on contrasts between absolute abundances of methanogens and methanotrophs at depths sampled across rhizosphere and bulk soils (especially millimeter-scale slices at the surface), we have identified populations of methanogens (Methanosaeta, Methanoregula, Methanocella, Methanobacterium, and Methanosphaerula), and methanotrophs (Methylosarcina, Methylococcus, Methylosinus, and unclassified Methylocystaceae) that are likely physiologically active in situ.

11.
Appl Environ Microbiol ; 81(1): 40-7, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25304509

ABSTRACT

Non-culture-based procedures were used to investigate plasmids showing ampicillin resistance properties in two different environments: remote mountain soil (Mt. Jeombong) and sludge (Tancheon wastewater treatment plant). Total DNA extracted from the environmental samples was directly transformed into Escherichia coli TOP10, and a single and three different plasmids were obtained from the mountain soil and sludge samples, respectively. Interestingly, the restriction fragment length polymorphism pattern of the plasmid from the mountain soil sample, designated pEMB1, was identical to the pattern of one of the three plasmids from the sludge sample. Complete DNA sequencing of plasmid pEMB1 (8,744 bp) showed the presence of six open reading frames, including a ß-lactamase gene. Using BLASTX, the orf5 and orf6 genes were suggested to encode a CopG family transcriptional regulator and a plasmid stabilization system, respectively. Functional characterization of these genes using a knockout orf5 plasmid (pEMB1ΔparD) and the cloning and expression of orf6 (pET21bparE) indicated that these genes were antitoxin (parD) and toxin (parE) genes. Plasmid stability tests using pEMB1 and pEMB1ΔparDE in E. coli revealed that the orf5 and orf6 genes enhanced plasmid maintenance in the absence of ampicillin. Using a PCR-based survey, pEMB1-like plasmids were additionally detected in samples from other human-impacted sites (sludge samples) and two other remote mountain soil samples, suggesting that plasmids harboring a ß-lactamase gene with a ParD-ParE toxin-antitoxin system occurs broadly in the environment. This study extends knowledge about the dissemination and persistence of antibiotic resistance genes in naturally occurring microbial populations.


Subject(s)
Ampicillin Resistance , Escherichia coli/isolation & purification , Genomic Instability , Plasmids , Sewage/microbiology , Soil Microbiology , beta-Lactamases/genetics , Bacterial Toxins/genetics , Cloning, Molecular , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Knockout Techniques , Molecular Sequence Data , Open Reading Frames , Polymorphism, Restriction Fragment Length , Sequence Analysis, DNA
12.
Environ Microbiol Rep ; 7(2): 252-64, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25403415

ABSTRACT

Deciphering the in situ activities of microorganisms is essential for understanding the biogeochemical processes occurring in complex environments. Here, we used environmental metaproteomics to obtain information about the identity of subsurface microbial populations in coal tar-contaminated groundwater and the metabolic processes they catalyze. Metaproteomic libraries (two shotgun and seven slices from one SDS-PAGE gel) were generated from replicate samples of microbial biomass. Peptide fragment analysis using nano-liquid chromatography (LC)-mass spectrometry (MS)/MS of the three protein pools generated a total of 95,725 mass spectra. When analyzed using mascot v.2.3.02 and searched against the NCBInr bacterial database [confidence interval 99% (P < 0.01)], a total of 1,270 proteins had at least two peptide matches. Replication of identified proteins across the three libraries was low (3.3%); however, in each library, the most frequently identified protein host was Candidatus Methylomirabilis oxyfera (15, 12 and 62 proteins for each shotgun and the gel-slice library respectively). Remarkably, eight of the nine proteins in the nitrite-dependent anaerobic methane oxidation pathway were found. Additionally, 39 proteins were matched to known anammox bacteria including hydroxylamine and hydrazine oxidase. Metaproteomics thus revealed a microbial population, closely related to Ca. Methylomirabilis oxyfera, actively engaged in nitrite-dependent anaerobic methane oxidation and likely competing for nitrite with anammox bacteria.


Subject(s)
Bacteria/chemistry , Bacteria/metabolism , Bacterial Proteins/analysis , Groundwater/microbiology , Methane/metabolism , Nitrites/metabolism , Proteome/analysis , Anaerobiosis , Chromatography, Liquid , Metabolic Networks and Pathways , Oxidation-Reduction , Tandem Mass Spectrometry
13.
PLoS One ; 9(5): e96449, 2014.
Article in English | MEDLINE | ID: mdl-24798206

ABSTRACT

Ammonia-oxidizing archaea (AOA) are ubiquitous and abundant and contribute significantly to the carbon and nitrogen cycles in the ocean. In this study, we assembled AOA draft genomes from two deep marine sediments from Donghae, South Korea, and Svalbard, Arctic region, by sequencing the enriched metagenomes. Three major microorganism clusters belonging to Thaumarchaeota, Epsilonproteobacteria, and Gammaproteobacteria were deduced from their 16S rRNA genes, GC contents, and oligonucleotide frequencies. Three archaeal genomes were identified, two of which were distinct and were designated Ca. "Nitrosopumilus koreensis" AR1 and "Nitrosopumilus sediminis" AR2. AR1 and AR2 exhibited average nucleotide identities of 85.2% and 79.5% to N. maritimus, respectively. The AR1 and AR2 genomes contained genes pertaining to energy metabolism and carbon fixation as conserved in other AOA, but, conversely, had fewer heme-containing proteins and more copper-containing proteins than other AOA. Most of the distinctive AR1 and AR2 genes were located in genomic islands (GIs) that were not present in other AOA genomes or in a reference water-column metagenome from the Sargasso Sea. A putative gene cluster involved in urea utilization was found in the AR2 genome, but not the AR1 genome, suggesting niche specialization in marine AOA. Co-cultured bacterial genome analysis suggested that bacterial sulfur and nitrogen metabolism could be involved in interactions with AOA. Our results provide fundamental information concerning the metabolic potential of deep marine sedimentary AOA.


Subject(s)
Archaea/genetics , Genome, Archaeal , Geologic Sediments/microbiology , Ammonia/metabolism , Archaea/classification , Archaea/metabolism , Oxidation-Reduction , Phylogeny
14.
Appl Environ Microbiol ; 80(10): 3233-43, 2014 May.
Article in English | MEDLINE | ID: mdl-24632261

ABSTRACT

Stable isotope probing (SIP) is a cultivation-free methodology that provides information about the identity of microorganisms participating in assimilatory processes in complex communities. In this study, a Herminiimonas-related bacterium was identified as the dominant member of a denitrifying microcosm fed [(13)C]toluene. The genome of the uncultivated toluene-degrading bacterium was obtained by applying pyrosequencing to the heavy DNA fraction. The draft genome comprised ~3.8 Mb, in 131 assembled contigs. Metabolic reconstruction of aromatic hydrocarbon (toluene, benzoate, p-cresol, 4-hydroxybenzoate, phenylacetate, and cyclohexane carboxylate) degradation indicated that the bacterium might specialize in anaerobic hydrocarbon degradation. This characteristic is novel for the order Burkholderiales within the class Betaproteobacteria. Under aerobic conditions, the benzoate oxidation gene cluster (BOX) system is likely involved in the degradation of benzoate via benzoyl coenzyme A. Many putative genes for aromatic hydrocarbon degradation were closely related to those in the Rhodocyclaceae (particularly Aromatoleum aromaticum EbN1) with respect to organization and sequence similarity. Putative mobile genetic elements associated with these catabolic genes were highly abundant, suggesting gene acquisition by Herminiimonas via horizontal gene transfer.


Subject(s)
Betaproteobacteria/metabolism , Geologic Sediments/microbiology , Nitrates/metabolism , Toluene/metabolism , Bacterial Proteins/genetics , Betaproteobacteria/classification , Betaproteobacteria/genetics , Betaproteobacteria/isolation & purification , Gene Expression Regulation, Bacterial , Molecular Sequence Data , Molecular Structure , Oxidation-Reduction , Phylogeny , Toluene/chemistry
15.
Appl Environ Microbiol ; 80(11): 3375-83, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24657858

ABSTRACT

Anaerobic digesters rely on the diversity and distribution of parallel metabolic pathways mediated by complex syntrophic microbial communities to maintain robust and optimal performance. Using mesophilic swine waste digesters, we experimented with increased ammonia loading to induce a shift from aceticlastic methanogenesis to an alternative acetate-consuming pathway of syntrophic acetate oxidation. In comparison with control digesters, we observed shifts in bacterial 16S rRNA gene content and in functional gene repertoires over the course of the digesters' 3-year operating period. During the first year, under identical startup conditions, all bioreactors mirrored each other closely in terms of bacterial phylotype content, phylogenetic structure, and evenness. When we perturbed the digesters by increasing the ammonia concentration or temperature, the distribution of bacterial phylotypes became more uneven, followed by a return to more even communities once syntrophic acetate oxidation had allowed the experimental bioreactors to regain stable operation. The emergence of syntrophic acetate oxidation coincided with a partial shift from aceticlastic to hydrogenotrophic methanogens. Our 16S rRNA gene analysis also revealed that acetate-fed enrichment experiments resulted in communities that did not represent the bioreactor community. Analysis of shotgun sequencing of community DNA suggests that syntrophic acetate oxidation was carried out by a heterogeneous community rather than by a specific keystone population with representatives of enriched cultures with this metabolic capacity.


Subject(s)
Acetates/metabolism , Ammonia/metabolism , Bacteria/classification , Bacteria/metabolism , Bioreactors/microbiology , Biota/drug effects , Animals , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Feces/microbiology , Hydrogen/metabolism , Methane/metabolism , Molecular Sequence Data , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Swine
16.
Microb Ecol ; 67(3): 520-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24425229

ABSTRACT

Our goal is to strengthen the foundations of metaproteomics as a microbial community analysis tool that links the functional identity of actively expressed gene products with host phylogeny. We used shotgun metaproteomics to survey waters in six disparate aquatic habitats (Cayuga Lake, NY; Oneida Lake, NY; Gulf of Maine; Chesapeake Bay, MD; Gulf of Mexico; and the South Pacific). Peptide pools prepared from filter-gathered microbial biomass, analyzed by nano-liquid chromatography-mass spectrometry (MS/MS) generating 9,693 ± 1,073 mass spectra identified 326 ± 107 bacterial proteins per sample. Distribution of proteobacterial (Alpha and Beta) and cyanobacterial (Prochlorococcus and Synechococcus spp.) protein hosts across all six samples was consistent with the previously published biogeography for these microorganisms. Marine samples were enriched in transport proteins (TRAP-type for dicarboxylates and ATP binding cassette (ABC)-type for amino acids and carbohydrates) compared with the freshwater samples. We were able to match in situ expression of many key proteins catalyzing C-, N-, and S-cycle processes with their bacterial hosts across all six habitats. Pelagibacter was identified as the host of ABC-type sugar-, organic polyanion-, and glycine betaine-transport proteins; this extends previously published studies of Pelagibacter's in situ biogeochemical role in marine C- and N-metabolism. Proteins matched to Ruegeria confirmed these organism's role in marine waters oxidizing both carbon monoxide and sulfide. By documenting both processes expressed in situ and the identity of host cells, metaproteomics tested several existing hypotheses about ecophysiological processes and provided fodder for new ones.


Subject(s)
Bacterial Proteins/genetics , Cyanobacteria/physiology , Proteobacteria/physiology , Proteomics , Bacterial Proteins/metabolism , Biodiversity , Chromatography, Liquid , Cyanobacteria/classification , Cyanobacteria/genetics , Fresh Water/microbiology , Molecular Sequence Data , Pacific Ocean , Phylogeny , Phylogeography , Proteobacteria/classification , Proteobacteria/genetics , Seawater/microbiology , Sequence Analysis, DNA , Tandem Mass Spectrometry , United States
17.
FEMS Microbiol Ecol ; 88(1): 195-212, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24410836

ABSTRACT

Methane emissions, along with methanotrophs and methanogens and soil chemical properties, were investigated in a flooded rice ecosystem. Methane emission increased after rice transplantation (from 7.2 to 552 mg day(-1) m(-2) ) and was positively and significantly correlated with transcripts of pmoA and mcrA genes, transcript/gene ratios of mcrA, temperature and total organic carbon. Methane flux was negatively correlated with sulfate concentration. Methanotrophs represented only a small proportion (0.79-1.75%) of the total bacterial 16S rRNA gene reads: Methylocystis (type II methanotroph) decreased rapidly after rice transplantation, while Methylosinus and unclassified Methylocystaceae (type II) were relatively constant throughout rice cultivation. Methylocaldum, Methylobacter, Methylomonas and Methylosarcina (type I) were sparse during the early period, but they increased after 60 days, and their maximum abundances were observed at 90-120 days. Of 33 218 archaeal reads, 68.3-86.6% were classified as methanogens. Methanosaeta, Methanocella, Methanosarcina and Methanobacterium were dominant methanogens, and their maximum abundances were observed at days 60-90. Only four reads were characteristic of anaerobic methanotrophs, suggesting that anaerobic methane metabolism is negligible in this rice paddy system. After completing a multivariate canonical correspondence analysis of our integrated data set, we found normalized mcrA/pmoA transcript ratios to be a promising parameter for predicting net methane fluxes emitted from rice paddy soils.


Subject(s)
Euryarchaeota/classification , Methane/metabolism , Methylococcaceae/metabolism , Methylocystaceae/metabolism , Methylosinus/metabolism , Oryza , Soil Microbiology , DNA, Archaeal/genetics , DNA, Bacterial/genetics , Euryarchaeota/metabolism , Methylococcaceae/genetics , Methylocystaceae/genetics , Methylosinus/genetics , Oxygenases/genetics , Oxygenases/metabolism , Polymorphism, Restriction Fragment Length , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism
18.
Int J Food Microbiol ; 163(2-3): 171-9, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23558201

ABSTRACT

Barcode-based 16S rRNA gene pyrosequencing showed that the kimchi microbiome was dominated by six lactic acid bacteria (LAB), Leuconostoc (Lc.) mesenteroides, Lactobacillus (Lb.) sakei, Weissella (W.) koreensis, Lc. gelidum, Lc. carnosum, and Lc. gasicomitatum. Therefore, we used completed genome sequences of representatives of these bacteria to investigate metatranscriptomic gene-expression profiles during kimchi fermentation. Total mRNA was extracted from kimchi samples taken at five time points during a 29 day-fermentation. Nearly all (97.7%) of the metagenome sequences that were recruited on all LAB genomes of GenBank mapped onto the six LAB strains; this high coverage rate indicated that this approach for assessing processes carried out by the kimchi microbiome was valid. Expressed mRNA sequences (as cDNA) were determined using Illumina GA IIx. Assignment of mRNA sequences to metabolic genes using MG-RAST revealed the prevalence of carbohydrate metabolism and lactic acid fermentation. The mRNA sequencing reads were mapped onto genomes of the six LAB strains, which showed that Lc. mesenteroides was most active during the early-stage fermentation, whereas gene expression by Lb. sakei and W. koreensis was high during later stages. However, gene expression by Lb. sakei decreased rapidly at 25 days of fermentation, which was possibly caused by bacteriophage infection of the Lactobacillus species. Many genes related to carbohydrate transport and hydrolysis and lactate fermentation were actively expressed, which indicated typical heterolactic acid fermentation. Mannitol dehydrogenase-encoding genes (mdh) were identified from all Leuconostoc species and especially Lc. mesenteroides, which harbored three copies (two copies on chromosome and one copy on plasmid) of mdh with different expression patterns. These results contribute to knowledge of the active populations and gene expression in the LAB community responsible for an important fermentation process.


Subject(s)
Fermentation , Food Microbiology , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Gram-Positive Bacteria/genetics , Gram-Positive Bacteria/metabolism , Carbohydrate Metabolism/genetics , Hydrogen-Ion Concentration , Metagenome , Microbial Viability , RNA, Ribosomal, 16S/genetics
19.
Curr Opin Biotechnol ; 24(3): 474-81, 2013 Jun.
Article in English | MEDLINE | ID: mdl-22999827

ABSTRACT

Microbial processes that eliminate organic environmental contamination are important. Progress in the biotechnology of biodegradation relies upon the underlying sciences of environmental microbiology and analytical geochemistry. Recent key discoveries advancing knowledge of biodegradation (in general) and the aromatic-hydrocarbon biodegradation (in particular) have relied upon characterization of microorganisms: pure-culture isolates, laboratory enrichment cultures, and in contaminated field sites. New analytical and molecular tools (ranging from sequencing the DNA of biodegrading microorganisms to assessing changes in the isotopic ratios of 13C to 12C and 2H to 1H in contaminant pools in field sites) have deepened our insights into the mechanisms (how), the occurrence (what), and the identity (who) of active players that effect biodegradation of organic environmental pollutants.


Subject(s)
Environmental Microbiology , Environmental Pollutants/metabolism , Hydrocarbons, Aromatic/metabolism , Biodegradation, Environmental , Biotechnology , Isotopes/analysis
20.
Appl Environ Microbiol ; 79(2): 663-71, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23160122

ABSTRACT

Pseudoxanthomonas spadix BD-a59, isolated from gasoline-contaminated soil, has the ability to degrade all six BTEX (benzene, toluene, ethylbenzene, and o-, m-, and p-xylene) compounds. The genomic features of strain BD-a59 were analyzed bioinformatically and compared with those of another fully sequenced Pseudoxanthomonas strain, P. suwonensis 11-1, which was isolated from cotton waste compost. The genome of strain BD-a59 differed from that of strain 11-1 in many characteristics, including the number of rRNA operons, dioxygenases, monooxygenases, genomic islands (GIs), and heavy metal resistance genes. A high abundance of phage integrases and GIs and the patterns in several other genetic measures (e.g., GC content, GC skew, Karlin signature, and clustered regularly interspaced short palindromic repeat [CRISPR] gene homology) indicated that strain BD-a59's genomic architecture may have been altered through horizontal gene transfers (HGT), phage attack, and genetic reshuffling during its evolutionary history. The genes for benzene/toluene, ethylbenzene, and xylene degradations were encoded on GI-9, -13, and -21, respectively, which suggests that they may have been acquired by HGT. We used bioinformatics to predict the biodegradation pathways of the six BTEX compounds, and these pathways were proved experimentally through the analysis of the intermediates of each BTEX compound using a gas chromatograph and mass spectrometry (GC-MS). The elevated abundances of dioxygenases, monooxygenases, and rRNA operons in strain BD-a59 (relative to strain 11-1), as well as other genomic characteristics, likely confer traits that enhance ecological fitness by enabling strain BD-a59 to degrade hydrocarbons in the soil environment.


Subject(s)
Genome, Bacterial , Hydrocarbons/metabolism , Metabolic Networks and Pathways/genetics , Soil Pollutants/metabolism , Xanthomonadaceae/genetics , Xanthomonadaceae/metabolism , Computational Biology , Gasoline , Soil Microbiology , Xanthomonadaceae/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...