Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
Front Cardiovasc Med ; 9: 953211, 2022.
Article in English | MEDLINE | ID: mdl-36299872

ABSTRACT

Background: Mechanisms contributing to tissue remodeling of the infarcted heart following cell-based therapy remain elusive. While cell-based interventions have the potential to influence the cardiac healing process, there is little direct evidence of preservation of functional myocardium. Aim: The aim of the study was to investigate tissue remodeling in the infarcted heart following human embryonic stem cell-derived endothelial cell product (hESC-ECP) therapy. Materials and methods: Following coronary artery ligation (CAL) to induce cardiac ischemia, we investigated infarct size at 1 day post-injection in media-injected controls (CALM, n = 11), hESC-ECP-injected mice (CALC, n = 10), and dead hESC-ECP-injected mice (CALD, n = 6); echocardiography-based functional outcomes 14 days post-injection in experimental (CALM, n = 13; CALC, n = 17) and SHAM surgical mice (n = 4); and mature infarct size (CALM and CALC, both n = 6). We investigated ligand-receptor interactions (LRIs) in hESC-ECP cell populations, incorporating a publicly available C57BL/6J mouse cardiomyocyte-free scRNAseq dataset with naive, 1 day, and 3 days post-CAL hearts. Results: Human embryonic stem cell-derived endothelial cell product injection reduces the infarct area (CALM: 54.5 ± 5.0%, CALC: 21.3 ± 4.9%), and end-diastolic (CALM: 87.8 ± 8.9 uL, CALC: 63.3 ± 2.7 uL) and end-systolic ventricular volume (CALM: 56.4 ± 9.3 uL, CALC: 33.7 ± 2.6 uL). LRI analyses indicate an alternative immunomodulatory effect mediated via viable hESC-ECP-resident signaling. Conclusion: Delivery of the live hESC-ECP following CAL modulates the wound healing response during acute pathological remodeling, reducing infarct area, and preserving functional myocardium in this relatively acute model. Potential intrinsic myocardial cellular/hESC-ECP interactions indicate that discreet immunomodulation could provide novel therapeutic avenues to improve cardiac outcomes following myocardial infarction.

2.
J. physiol. biochem ; 78(2): 501-516, May. 2022.
Article in English | IBECS | ID: ibc-215977

ABSTRACT

The purpose of this study was to determine whether magnesium L-lactate is responsible for having a beneficial effect on the myocardium and the skeletal muscles and how this substrate acts at the molecular level. Twenty seven young male Wistar rats were supplied with a magnesium L-lactate (L) solution, a magnesium chloride (M) solution and/or water (W) as a vehicle for 10 weeks. The treated animals absorbed the L and M solutions as they wished since they also had free access to water. After 9 weeks of treatment, in vivo cardiac function was determined ultrasonically. The animals were sacrificed at the end of the tenth week of treatment and the heart was perfused according to the Langendorff method by using a technique allowing the determination of cardiomyocyte activity (same coronary flow in the two groups). Blood was collected and skeletal muscles of the hind legs were weighed. The myocardial expressions of the sodium/proton exchange 1 (NHE1) and sodium/calcium exchange 1 (NCX1), intracellular calcium accumulation, myocardial magnesium content, as well as systemic and tissue oxidative stress, were determined. Animals of the L group absorbed systematically a low dose of L-lactate (31.5 ± 4.3 µg/100 g of body weight/day) which was approximately four times higher than that ingested in the W group through the diet supplied. Ex vivo cardiomyocyte contractility and the mass of some skeletal muscles (tibialis anterior) were increased by the L treatment. Myocardial calcium was decreased, as was evidenced by an increase in total CaMKII expression, without any change in the ratio between phosphorylated CaMKII and total CaMKII. Cardiac magnesium tended to be elevated. Our results suggest that the increased intracellular magnesium concentration was related to L-lactate-induced cytosolic acidosis and to the activation of the NHE1/NCX1 axis. Interestingly, systemic oxidative stress was reduced by the L treatment whereas the lipid profile of the animals was unaltered. (AU)


Subject(s)
Animals , Rats , Magnesium/metabolism , Magnesium/pharmacology , Calcium/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Muscle, Skeletal/metabolism , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...