Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Molecules ; 29(13)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38998962

ABSTRACT

Cancer is one of the deadliest diseases to humanity. There is significant progress in treating this disease, but developing some drugs that can fight this disease remains a challenge in the field of medical research. Thirteen new 1,2,3-triazole linked tetrahydrocurcumin derivatives were synthesized by click reaction, including a 1,3-dipolar cycloaddition reaction of tetrahydrocurcumin baring mono-alkyne with azides in good yields, and their in vitro anticancer activity against four cancer cell lines, including human cervical carcinoma (HeLa), human lung adenocarcinoma (A549), human hepatoma carcinoma (HepG2), and human colon carcinoma (HCT-116) were investigated using MTT(3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetraz-olium bromide) assay. The newly synthesized compounds had their structures identified using NMR HRMS and IR techniques. Some of prepared compounds, including compounds 4g and 4k, showed potent cytotoxic activity against four cancer cell lines compared to the positive control of cisplatin and tetrahydrocurcumin. Compound 4g exhibited anticancer activity with a IC50 value of 1.09 ± 0.17 µM against human colon carcinoma HCT-116 and 45.16 ± 0.92 µM against A549 cell lines compared to the positive controls of tetrahydrocurcumin and cisplatin. Moreover, further biological examination in HCT-116 cells showed that compound 4g can arrest the cell cycle at the G1 phase. A docking study revealed that the potential mechanism by which 4g exerts its anti-colon cancer effect may be through inhabiting the binding of APC-Asef. Compound 4g can be used as a promising lead for further exploration of potential anticancer agents.


Subject(s)
Antineoplastic Agents , Curcumin , Molecular Docking Simulation , Triazoles , Humans , Curcumin/pharmacology , Curcumin/analogs & derivatives , Curcumin/chemistry , Curcumin/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Cell Line, Tumor , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Cell Proliferation/drug effects , Molecular Structure , A549 Cells , HCT116 Cells , Hep G2 Cells
2.
ACS Omega ; 9(27): 29205-29225, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005764

ABSTRACT

Developing proficient organic solar cells with improved optoelectronic properties is still a matter of concern. In the current study, with an aspiration to boost the optoelectronic properties and proficiency of organic solar cells, seven new small-molecule acceptors (Db1-Db7) are presented by altering the central core of the reference molecule (DBD-4F). The optoelectronic aspects of DBD-4F and Db1-Db7 molecules were explored using the density functional theory (DFT) approach, and solvent-state calculations were assessed utilizing TD-SCF simulations. It was noted that improvement in photovoltaic features was achieved by designing these molecules. The results revealed a bathochromic shift in absorption maxima (λmax) of designed molecules reaching up to 776 nm compared to 736 nm of DBD-4F. Similarly, a narrow band gap, low excitation energy, and reduced binding energy were also observed in newly developed molecules in comparison with the pre-existing DBD-4F molecule. Performance improvement can be indicated by the high light-harvesting efficiency (LHE) of designed molecules (ranging from 0.9992 to 0.9996 eV) compared to the reference having a 0.9991 eV LHE. Db4 and Db5 exhibited surprisingly improved open-circuit voltage (V OC) values up to 1.64 and 1.67 eV and a fill factor of 0.9198 and 0.9210, respectively. Consequently, these newly designed molecules can be considered in the future for practical use in manufacturing OSCs with improved optoelectronic and photovoltaic attributes.

4.
J Mol Model ; 30(8): 249, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967854

ABSTRACT

CONTEXT: Various toxic gasses are being released into the environment with the increasing industrialization. However, detecting these gasses at low concentrations has become one of the main challenges in environmental monitoring and protection. Thus, developing sensors with high performance to detect toxic gasses is of utmost significance. For this purpose, researchers have introduced 2D materials thanks to their unique electronic qualities and large specific surface area. Within this piece of research, a hexagonal boron phosphide monolayer (h-BPML) is employed as the substrate material. The adhesion behavior of ambient nitrogen-containing toxic gasses, i.e., N2O, NH3, NO2, and NO, onto the h-BPML is investigated through DFT computations. The adhesion energy values for gasses NO and NO2 were calculated to be - 0.509 and - 0.694 eV on the h-BPML, respectively. Meanwhile, the absorbed energy values for gasses NH3 and N2O were found to be - 0.326 and - 0.119 eV, respectively. The recovery time, DOS, workfunction, and Bader charges were computed based on four optimal adhesion structures. After the absorption of NO on the h-BPML, the value of workfunction of a monolayer decreased from 1.54 to 0.47 eV. This amount of decrease was the greatest among the other gasses absorbed. By comparing the investigated parameters, it can be concluded that the h-BPML has a greater tendency to interact with NO gas compared to other gasses, and it can be proposed as a sensor for NO gas. METHOD: Within this piece of research, the sensitivity of the h-BPML to four nitrogenous toxic gasses, namely, N2O, NH3, NO2, and NO, was investigated using the DFT with HSE06 hybrid functional by using GAMESS software. For this purpose, we computed the DOS, workfunction, and the Bader charges for the four adhesion systems with most stability.

5.
Water Sci Technol ; 89(11): 2991-3006, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877626

ABSTRACT

Recent decades have seen a shortage of water, which has led scientists to concentrate on solar desalination technologies. The present study examines the solar water desalination system with inclined steps, while considering various phase change materials (PCMs). The findings suggest that the incorporation of PCM generally enhances the productivity of the solar desalination system. Additionally, the combination of nanoparticles has been used to PCM, which is a popular technique utilized nowadays to improve the efficiency of these systems. The current investigation involves the transient modeling of a solar water desalination system, utilizing energy conservation equations. The equations were solved using the Runge-Kutta technique of the ODE23s order. The temperatures of the salt water, the absorbent plate of the glass cover, and the PCM were calculated at each time. Without a phase changer, the rate at which fresh water is produced is around 5.15 kg/m2·h. The corresponding mass flow rates of paraffin, n-PCM I, n-PCM III, n-PCM II, and stearic acid are 22.9, 28.9, 5.9, 11.9, and 73 kg/m2·h. PCMs, with the exception of stearic acid, exhibit similar energy efficiency up to an ambient temperature of around 29°. However, at temperatures over 29°, n-PCM II outperforms other PCM.


Subject(s)
Nanostructures , Sunlight , Water Purification , Water Purification/methods , Water Purification/instrumentation , Nanostructures/chemistry , Temperature
6.
J Mol Model ; 30(5): 153, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691244

ABSTRACT

CONTEXT: CO2 and CO gas sensors are very important to recognize the insulation situation of electrical tools. ToCO explore the application of noble metal doped of aluminum nitride nanotubes for gas sensors, DFT computations according to the first principal theory were applied to study sensitivity, adsorption attributes, and electronic manner. In this investigation, platinum-doped aluminum nitride nanotubes were offered for the first time to analyze the adsorption towards CO2 and CO gases. Firm construction of platinum-doped aluminum nitride nanotubes (Pt-AlNNT) was investigated in four feasible places, and the binding energy of firm construction is 1.314 eV. Respectively, the adsorption energy between the CO2 and Pt-AlNNT systems was - 2.107 eV, while for instance of CO, the adsorption energy was - 3.258 eV. The mentioned analysis and computations are considerable for studying Pt-AlNNT as a new CO2 and CO gas sensor for electrical tools insulation. The current study revealed that the Pt-AlNNT possesses high selectivity and sensitivity towards CO2 and CO. METHODS: In this research, Pt-doped AlNNT (Pt-AlNNT) has been studied as sensing materials of CO and CO2 for the first time. The adsorption process of Pt-AlNNT has been computed and analyzed through the DFT approach. DFT computations by using B3LYP functional and 6-31 + G* basis sets have been applied in the GAMESS code for sensing attributes, which contribute to potential applications.

7.
Article in English | MEDLINE | ID: mdl-38767672

ABSTRACT

Alkaloids are a complex class of biologically active compounds with a broad spectrum of health-related applications. Particularly the alkaloids of indole, steroidal, terpenoids, isoquinoline, and bisbenzylisoquinoline have been extensively investigated. Ultimately, substantial advancement has been highlighted in the investigation of chemical constituents and the therapeutic benefits of plant alkaloids, particularly during the last ten years. A total of 386 alkaloids have been isolated from over 40 families, including Apocynaceae, Annonaceae, Rubiaceae, Menispermaceae, Ranunculaceae, Buxaceae, Papaveraceae, Magnoliaceae, Rutaceae and Phyllanthaceae. This paper will investigate several alkaloids that have been isolated from botanical medicines as well as offer an in-depth analysis of their cytotoxic properties.

8.
Bioorg Chem ; 147: 107385, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663255

ABSTRACT

Chronic liver diseases caused by hepatitis B virus (HBV) are the accepted main cause leading to liver cirrhosis, hepatic fibrosis, and hepatic carcinoma. Sodium taurocholate cotransporting polypeptide (NTCP), a specific membrane receptor of hepatocytes for triggering HBV infection, is a promising target against HBV entry. In this study, pentacyclic triterpenoids (PTs) including glycyrrhetinic acid (GA), oleanolic acid (OA), ursolic acid (UA) and betulinic acid (BA) were modified via molecular hybridization with podophyllotoxin respectively, and resulted in thirty-two novel conjugates. The anti-HBV activities of conjugates were evaluated in HepG2.2.15 cells. The results showed that 66% of the conjugates exhibited lower toxicity to the host cells and had significant inhibitory effects on the two HBV antigens, especially HBsAg. Notably, the compounds BA-PPT1, BA-PPT3, BA-PPT4, and UA-PPT3 not only inhibited the secretion of HBsAg but also suppressed HBV DNA replication. A significant difference in the binding of active conjugates to NTCP compared to the HBV PreS1 antigen was observed by SPR assays. The mechanism of action was found to be the competitive binding of these compounds to the NTCP 157-165 epitopes, blocking HBV entry into host cells. Molecular docking results indicated that BA-PPT3 interacted with the amino acid residues of the target protein mainly through π-cation, hydrogen bond and hydrophobic interaction, suggesting its potential as a promising HBV entry inhibitor targeting the NTCP receptor.


Subject(s)
Antiviral Agents , Hepatitis B virus , Organic Anion Transporters, Sodium-Dependent , Pentacyclic Triterpenes , Symporters , Virus Internalization , Humans , Hepatitis B virus/drug effects , Hepatitis B virus/metabolism , Organic Anion Transporters, Sodium-Dependent/antagonists & inhibitors , Organic Anion Transporters, Sodium-Dependent/metabolism , Symporters/metabolism , Symporters/antagonists & inhibitors , Antiviral Agents/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Virus Internalization/drug effects , Hep G2 Cells , Pentacyclic Triterpenes/pharmacology , Pentacyclic Triterpenes/chemical synthesis , Pentacyclic Triterpenes/chemistry , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Molecular Docking Simulation , Triterpenes/pharmacology , Triterpenes/chemistry , Triterpenes/chemical synthesis , Hepatitis B Surface Antigens/metabolism
9.
Int J Surg ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38626410

ABSTRACT

BACKGROUND: Migraine affects approximately 14-15% of the global population, contributing to nearly 5% of the world's health burden. When drug treatments prove ineffective for intractable migraines, highly specific surgical interventions emerge as potential solutions. We aimed to analyze surgical approaches for these refractory or intractable migraines through a systematic review and meta-analysis. METHODS: We conducted a literature search across databases such as PubMed, Scopus, Web of Science, and Embase, focusing on studies related to migraines and surgical outcomes. We considered clinical trials or observational studies that included any surgical intervention for refractory or intractable migraines, emphasizing key outcomes such as reductions in migraine intensity, Migraine Disability Assessment scores (MIDAS), and 50% Migraine Headache Index (MHI) reduction rates. Statistical analyses were performed using R version 4.3. RESULTS: Eleven studies were included in the systematic review. A meta-analysis of four studies involving overall 95 patients showed a significant reduction in mean migraine intensity scores using ONS (-2.27, 95% CI: -3.92 to -0.63, P=0.021). Three studies with 85 patients showed an average MIDAS score reduction of -52.3, though this was not statistically significant (95% CI: -136.85 to 32.19, P=0.116). Two additional studies corroborated these reductions in MIDAS scores. Nerve decompression surgery showed a substantial decrease in the average migraine intensity (from 8.31 down to 4.06). Median MIDAS score dropped from 57 to 20. Two studies indicated a success rate of 40% and 82%, respectively, in achieving a 50% reduction in the Migraine MHI through nerve decompression. Findings from two studies suggest that septorhinoplasty and sinus surgery effectively decrease migraine intensity scores. CONCLUSION: The existing evidence emphasizes the potential advantages of surgical interventions as a promising approach to managing intractable or refractory migraines. However, robust and comprehensive research is crucial to refine and solidify the efficacy of these surgical methods, aiming for widespread benefits for patients, considering cost-effectiveness factors.

10.
Neurotoxicology ; 102: 106-113, 2024 May.
Article in English | MEDLINE | ID: mdl-38636605

ABSTRACT

BACKGROUND: Obstructive Sleep Apnea (OSA) is a significant health concern characterized by recurrent upper airway blockages during sleep, causing various health issues. There's growing evidence of a link between air pollution and OSA, though research results have been inconsistent. This systematic review and meta-analysis aims to consolidate and examine data on the relationship between air pollution and OSA's risk and severity. METHODS: A literature search across PubMed, EMBASE, and Web of Science was conducted until January 10, 2024. The selection criteria targeted studies involving OSA participants or those at risk, with quantitative air pollution assessments. The Nested Knowledge software facilitated screening and data extraction, while the Newcastle-Ottawa Scale was used for quality assessment. Meta-analyses, utilizing random-effects models, computed pooled odds ratios (ORs) for the OSA risk associated with PM2.5 and NO2 exposure, analyzed using R software version 4.3. RESULTS: The systematic review included twelve studies, four of which were analyzed in the meta-analysis. The meta-analysis revealed diverse results on the association of PM2.5 and NO2 with OSA risk. PM2.5 exposure showed a pooled OR of 0.987 (95 % CI: 0.836-1.138), indicating no substantial overall impact on OSA risk. Conversely, NO2 exposure was linked to a pooled OR of 1.095 (95 % CI: 0.920-1.270), a non-significant increase in risk. Many studies found a relationship between air pollution exposure and elevated Apnea-Hypopnea Index (AHI) levels, indicating a relationship between air pollution and OSA severity. CONCLUSION: The findings suggest air pollutants, especially NO2, might play a role in worsening OSA risk and severity, but the evidence isn't definitive. This highlights the variability of different pollutants' effects and the necessity for more research. Understanding these links is vital for shaping public health policies and clinical approaches to address OSA amidst high air pollution.


Subject(s)
Air Pollution , Sleep Apnea, Obstructive , Sleep Apnea, Obstructive/epidemiology , Humans , Air Pollution/adverse effects , Particulate Matter/adverse effects , Air Pollutants/adverse effects , Severity of Illness Index , Risk Factors , Nitrogen Dioxide/adverse effects , Environmental Exposure/adverse effects
11.
J Mol Graph Model ; 129: 108745, 2024 06.
Article in English | MEDLINE | ID: mdl-38442441

ABSTRACT

With the goal of developing a high-performance organic solar cell, nine molecules of A2-D-A1-D-A2 type are originated in the current investigation. The optoelectronic properties of all the proposed compounds are examined by employing the DFT approach and the B3LYP functional with a 6-31G (d, p) basis set. By substituting the terminal moieties of reference molecule with newly proposed acceptor groups, several optoelectronic and photovoltaic characteristics of OSCs have been studied, which are improved to a significant level when compared with reference molecule, i.e., absorption properties, excitation energy, exciton binding energy, band gap, oscillator strength, electrostatic potential, light-harvesting efficiency, transition density matrix, open-circuit voltage, fill factor, density of states and interaction coefficient. All the newly developed molecules (P1-P9) have improved λmax, small band gap, high oscillator strengths, and low excitation energies compared to the reference molecule. Among all the studied compounds, P9 possesses the least binding energy (0.24 eV), P8 has high interaction coefficient (0.70842), P3 has improved electron mobility due to the least electron reorganization energy (λe = 0.009182 eV), and P5 illustrates high light-harvesting efficiency (0.7180). P8 and P9 displayed better Voc results (1.32 eV and 1.33 eV, respectively) and FF (0.9049 and 0.9055, respectively). Likewise, the phenomenon of charge transfer in the PTB7-Th/P1 blend seems to be a marvelous attempt to introduce them in organic photovoltaics. Consequently, the outcomes of these parameters demonstrate that adding new acceptors to reference molecule is substantial for the breakthrough development of organic solar cells (OSCs).


Subject(s)
Electrons , Osteosclerosis , Pyrroles , Humans , Ketones
12.
Bone Rep ; 20: 101741, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38348455

ABSTRACT

Background: Proton pump inhibitors (PPIs) are among the most commonly prescribed medications worldwide for acid-related disorders. While their short-term efficacy and safety are well-established, concerns regarding their long-term effects on bone health have emerged. This umbrella review aimed to synthesize the available findings on the associations between PPI use and bone metabolism outcomes. Methods: An electronic search was conducted using PubMed, Web of Science, Embase, and the Cochrane Database up to September 16, 2023. Systematic reviews and meta-analyses of randomized controlled trials (RCTs) and observational studies that evaluated the relationship between PPIs and bone metabolism outcomes were included. Data extraction, quality appraisal, and synthesis were performed in line with the Joanna Briggs Institute and PRISMA guidelines. The strength of the evidence was graded using the GRADE criteria. Statistical analysis was performed in R version 4.3. Results: Out of 299 records, 27 studies met the inclusion criteria. The evidence indicated a statistically significant increased risk of fractures, notably hip, spine, and wrist fractures, in PPI users. PPI use was associated with changes in Bone Mineral Density (BMD) across various bones, though the clinical relevance of these changes remains uncertain. Furthermore, PPI-induced hypomagnesemia, which can influence bone health, was identified. A notable finding was the increased risk of dental implant failures in PPI users. However, the certainty of most of the evidence ranged from very low to low based on GRADE criteria. Conclusion: The long-term use of PPIs may be associated with adverse bone health outcomes, including increased fracture risk, alterations in BMD, hypomagnesemia, and dental implant failure. While these findings highlight potential concerns for long-term PPI users, the current evidence's low certainty underscores the need for robust, high-quality research to clarify these associations.

13.
J Mol Graph Model ; 129: 108722, 2024 06.
Article in English | MEDLINE | ID: mdl-38377792

ABSTRACT

Modification of terminal acceptors of non-fullerene organic solar cell molecule with different terminal acceptors can help in screening of molecules to develop organic photovoltaic cells with improved performance. Thus, in this work, seven new molecules with an unfused core have been designed and thoroughly investigated. DFT/TD-DFT simulations were performed on studied molecules to explore the ground and excited state characteristics. UV-Visible analysis revealed the red shift in the absorption spectrum (reaching 781 nm) owing to their smaller energy gap up to 1.94 eV. Furthermore, transition density matrix analysis demonstrated that peripheral acceptors extract the electron density from the core effectively. The effectiveness of our investigated molecules as materials for high-performing organic photovoltaic cells has been shown by an examination of their electron and hole mobilities for fast charge transfer. When combined with PTB7-Th, all molecules displayed high open circuit voltage. XP5 molecule exhibited highest open circuit voltage (1.70 eV) and lowest energy loss of 0.30 eV. All designed molecules exhibit the improved aforementioned parameters, which shows that these molecules can be used to develop competent solar devices in future.


Subject(s)
Electrons
14.
Adv Colloid Interface Sci ; 324: 103093, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38306848

ABSTRACT

With the increasing popularity of photocatalytic technology and the highly growing issues of energy scarcity and environmental pollution, there is an increasing interest in extremely efficient photocatalytic systems. The widespread immense attention and applicability of Nb2O5 photocatalysts can be attributed to their multiple benefits, including strong redox potentials, non-toxicity, earth abundance, corrosion resistance, and efficient thermal and chemical stability. However, the large-scale application of Nb2O5 is currently impeded by the barriers of rapid recombination loss of photo-activated electron/hole pairs and the inadequacy of visible light absorption. To overcome these constraints, plentiful design strategies have been directed at modulating the morphology, electronic band structure, and optical properties of Nb2O5. The current review offers an extensive analysis of Nb2O5-based photocatalysts, with a particular emphasis on crystallography, synthetic methods, design strategies, and photocatalytic mechanisms. Finally, an outline of future research directions and challenges in developing Nb2O5-based materials with excellent photocatalytic performance is presented.

15.
Saudi Pharm J ; 32(1): 101889, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38090737

ABSTRACT

The present study utilized molecular docking and density functional theory (DFT) approaches, and ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties to investigate the binding interactions, reactivity, stability, and drug-likeness of curcumin (1), tetrahydrocurcumin (2), and tetrahydrocurcumin derivatives (3-6) as potential anti-cancer agents. MGL (Molecular Graphic Laboratory) and Discovery Studio Visualizer (DSV) software employed for docking studies. Pharmacokinetic and pharmacodynamic (ADME-Tox) analyses were conducted using SwissADME and pKCSM web servers. Total Electron Density (TED) measurements identified molecular adsorption sites, considering various factors, including quantum chemical characteristics, to assess compound effectiveness using DFT method implanted in the Gaussian software. The binding energy (Eb) from docking simulations was used to evaluate inhibitory potential. ADMET analysis suggested favorable oral bioavailability and pharmacokinetics for all studied substances, excluding compound 4. DFT and docking investigations highlighted compounds 1, 2, and 6 as optimal scaffolds for drug design based on in silico screening tests.

16.
J Mol Graph Model ; 127: 108699, 2024 03.
Article in English | MEDLINE | ID: mdl-38150839

ABSTRACT

Improving the light-harvesting efficiency and boosting open circuit voltage are crucial challenges for enhancing the efficiency of organic solar cells. This work introduces seven new molecules (SA1-SA7) to upgrade the optoelectronic and photovoltaic properties of Q-C-F molecule-based solar cells. All recently designed molecules have the same alkyl-substituted Quinoxaline core and CPDT donor but vary in the end-capped acceptor subunits. All the investigated molecules have revealed superior properties than the model (R) by having absorbance ranging from 681 nm to 782 nm in the gaseous medium while 726 nm-861 nm in chloroform solvent, with the lowest band gap ranging from 1.91 to 2.19 eV SA1 molecule demonstrated the highest λmax (861 nm) in chloroform solvent and the lowest band gap (1.91 eV). SA2 molecule has manifested highest dipole moment (4.5089 D), lower exciton binding energy in gaseous (0.33 eV) and chloroform solvent (0.47 eV), and lower charge mobility of hole (0.0077693) and electron (0.0042470). At the same time, SA7 showed the highest open circuit voltage (1.56 eV) and fill factor (0.9166) due to solid electron-pulling acceptor moieties. From these supportive outcomes, it is inferred that our computationally investigated molecules may be promising candidates to be used in advanced versions of OSCs in the upcoming period.


Subject(s)
Chloroform , Quinoxalines , Electrons , Gases , Solvents
17.
Cureus ; 15(11): e48895, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38106697

ABSTRACT

The United States (US), the United Kingdom (UK), and China witnessed rising cases of coronavirus disease 2019 (COVID-19) in 2023. Concerns about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) novel strains amid the sudden surge of COVID cases are growing. Recently, BA.2.86 (Pirola) poses a much greater risk due to its higher transmission rate and spreading across regions. Pirola variant has mutations that set it apart from all earlier known SARS-CoV-2 variants. This variant was designated a variant of interest by the World Health Organization (WHO). Another SARS-CoV-2 variant named "Eris" (EG.5.1) was detected in India and started picking up in the US and the UK. The WHO listed EG.5.1 (variant) as a variant under monitoring. Therefore, it is important to remain vigilant. Further, multiple Nipah virus infections and scrub typhus cases are spreading among humans in India currently. In this situation, the 13th edition of the International Cricket Council (ICC) Men's Cricket World Cup is being held in India this year. With global reach, this big sporting carnival attracts millions of cricket fans from several countries. In light of the multiple public health concerns encountered currently, this gala global sports event needs additional preventive measures.

18.
Cureus ; 15(9): e45591, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37868556

ABSTRACT

Despite normalcy having almost returned in the lives of people throughout the world post-coronavirus disease-19 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the danger still looms over the fears of development and propagation of a newer SARS-CoV-2 variant. The movement of people globally has reached the pre-pandemic level, and this augmentation increased surveillance regarding the emergence of lethal SARS-CoV-2 variants. International sports events are among the potential avenues where the virus could cause serious impact. Therefore, the organization of such events should be planned and executed meticulously to avoid viral transmission and minimize the health effects of infections on the sportspersons and the local people. Additionally, there could be dissemination of the infections to the native countries of the participants and visitors while they return to their homes. Through this editorial, we prompt caution to the organizers and the event-hosting nation's administration regarding the potential threat and suggest measures to avoid any medical emergencies related to COVID-19.

19.
ACS Omega ; 8(35): 31747-31757, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37692219

ABSTRACT

The world faces multiple public health emergencies simultaneously, such as COVID-19 and Monkeypox (mpox). mpox, from being a neglected disease, has emerged as a global threat that has spread to more than 100 nonendemic countries, even as COVID-19 has been spreading for more than 3 years now. The general mpox symptoms are similar to chickenpox and measles, thus leading to a possible misdiagnosis. This study aimed at facilitating a rapid and high-brevity mpox diagnosis. Reportedly, mpox circulates among particular groups, such as sexually promiscuous gay and bisexuals. Hence, selectively vaccinating, isolating, and treating them seems difficult due to the associated social stigma. Deep learning (DL) has great promise in image-based diagnosis and could help in error-free bulk diagnosis. The novelty proposed, the system adopted, and the methods and approaches are discussed in the article. The present work proposes the use of DL models for automated early mpox diagnosis. The performances of the proposed algorithms were evaluated using the data set available in public domain. The data set adopted for the study was meant for both training and testing, the details of which are elaborated. The performances of CNN, VGG19, ResNet 50, Inception v3, and Autoencoder algorithms were compared. It was concluded that CNN, VGG19, and Inception v3 could help in early detection of mpox skin lesions, and Inception v3 returned the best (96.56%) classification accuracy.

20.
ACS Omega ; 8(31): 27953-27968, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576639

ABSTRACT

Adjuvants are the important part of vaccine manufacturing as they elicit the vaccination effect and enhance the durability of the immune response through controlled release. In light of this, nanoadjuvants have shown unique broad spectrum advantages. As nanoparticles (NPs) based vaccines are fast-acting and better in terms of safety and usability parameters as compared to traditional vaccines, they have attracted the attention of researchers. A vaccine nanocarrier is another interesting and promising area for the development of next-generation vaccines for prophylaxis. This review looks at the various nanoadjuvants and their structure-function relationships. It compiles the state-of-art literature on numerous nanoadjuvants to help domain researchers orient their understanding and extend their endeavors in vaccines research and development.

SELECTION OF CITATIONS
SEARCH DETAIL